Influence of Hydrophilicity on the Snβ-Catalyzed Baeyer-Villiger Oxidation of Cyclohexanone with Aqueous Hydrogen Peroxide

被引:30
作者
Conrad, Sabrina [1 ,2 ]
Wolf, Patrick [1 ,2 ]
Mueller, Philipp [1 ]
Orsted, Hailey [1 ]
Hermans, Ive [1 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Engn, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA
[2] Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Vladimir Prelog Weg 1-5-10, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Baeyer-Villiger oxidation; hydrophilicity; mass transfer; Sn beta zeolites; LEWIS-ACID CATALYSTS; AROMATIC-ALDEHYDES; CYCLIC-KETONES; ZEOLITES; LIQUID; WATER; CAPROLACTONE; EPOXIDATION; CONVERSION; COMPLEXES;
D O I
10.1002/cctc.201600893
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sn beta zeolites are amongst the most effective heterogeneous catalysts for the Baeyer-Villiger (BV) oxidation of ketones with aqueous hydrogen peroxide (H2O2). The high selectivity is rooted in the activation of the carbonyl substrate through interaction with the isolated Sn-IV sites. However, these sites are also accessible to other molecules in the reaction mixture (in particular the co-solvent and product). In this contribution, we report the impact of competitive adsorption on the Sn beta-catalyzed BV oxidation of cyclohexanone with aqueous H2O2. We furthermore prepared a series of Sn Chi zeolites with varying amounts of framework silanols and quantified their hydrophilicities with water adsorption and IR experiments. By correlating the results with catalytic data, we show that Sn beta zeolites with an intermediate hydrophilicity achieve the highest activity. Our adaptable post-synthetic synthesis allows us to tune the material synthesis, resulting in enhanced activity compared with conventional hydrothermal Sn beta.
引用
收藏
页码:175 / 182
页数:8
相关论文
共 57 条
[1]  
[Anonymous], 2003, SOLV SOLV EFF ORG CH
[2]  
Baeyer A., 1899, BER DTSCH CHEM GES, V32, P3625, DOI DOI 10.1002/CBER.189903203151
[3]   Oxidation of cyclohexanol to epsilon-caprolactone with aqueous hydrogen peroxide on H3PW12O40 and Cs2.5H0.5PW12O40 [J].
Balbinot, L. ;
Schuchardt, U. ;
Vera, C. ;
Sepulveda, J. .
CATALYSIS COMMUNICATIONS, 2008, 9 (09) :1878-1881
[4]  
Berkessel A, 2002, ANGEW CHEM INT EDIT, V41, P4481, DOI 10.1002/1521-3773(20021202)41:23<4481::AID-ANIE4481>3.0.CO
[5]  
2-7
[6]   Efficient catalytic methods for the Baeyer-Villiger oxidation and epoxidation with hydrogen peroxide [J].
Berkessel, A ;
Andreae, MRM .
TETRAHEDRON LETTERS, 2001, 42 (12) :2293-2295
[7]  
Berkessel A., 2002, ANGEW CHEM, V114, P4661
[8]   Baeyer-Villiger rearrangement catalysed by titanium silicate molecular sieve (TS-1)/H2O2 system [J].
Bhaumik, A ;
Kumar, P ;
Kumar, R .
CATALYSIS LETTERS, 1996, 40 (1-2) :47-50
[9]   A multisite molecular mechanism for Baeyer-Villiger oxidations on solid catalysts using environmentally friendly H2O2 as oxidant [J].
Boronat, M ;
Corma, A ;
Renz, M ;
Sastre, G ;
Viruela, PM .
CHEMISTRY-A EUROPEAN JOURNAL, 2005, 11 (23) :6905-6915
[10]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319