CONCENTRATION PHENOMENA FOR THE NONLOCAL SCHRODINGER EQUATION WITH DIRICHLET DATUM

被引:106
作者
Davila, Juan [1 ,2 ]
del Pino, Manuel [3 ]
Dipierro, Serena [4 ]
Valdinoci, Enrico [5 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago 8370459, Chile
[2] Univ Chile, Ctr Modelamiento Matemat, Santiago 8370459, Chile
[3] Univ Chile, Santiago 8370459, Chile
[4] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
[5] Weierstrass Inst Angew Anal & Stochast, D-10117 Berlin, Germany
来源
ANALYSIS & PDE | 2015年 / 8卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
nonlocal quantum mechanics; Green functions; concentration phenomena; ASYMPTOTIC-BEHAVIOR; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; UNIQUENESS; REGULARITY;
D O I
10.2140/apde.2015.8.1165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a smooth, bounded domain Omega, s is an element of (0, 1), P is an element of (1, (n+2s)/(n-2s)) we consider the nonlocal equation epsilon(2s)(-Delta)(s)u + u = up in Omega with zero Dirichlet datum and a small parameter epsilon > 0. We construct a family of solutions that concentrate as epsilon -> 0 at an interior point of the domain in the form of a scaling of the ground state in entire space. Unlike the classical case s = 1, the leading order of the associated reduced energy functional in a variational reduction procedure is of polynomial instead of exponential order on the distance from the boundary, due to the nonlocal effect. Delicate analysis is needed to overcome the lack of localization, in particular establishing the rather unexpected asymptotics for the Green function of epsilon(2s)(-Delta)(s) + 1 in the expanding domain epsilon(-1)Omega with zero exterior datum.
引用
收藏
页码:1165 / 1235
页数:71
相关论文
共 36 条
  • [1] Albeverio S. A., 2008, LECT NOTES MATH, V523
  • [2] Ambrosetti A., 2006, PROGR MATH, V240
  • [3] UNIQUENESS AND RELATED ANALYTIC PROPERTIES FOR THE BENJAMIN-ONO-EQUATION - A NONLINEAR NEUMANN PROBLEM IN THE PLANE
    AMICK, CJ
    TOLAND, JF
    [J]. ACTA MATHEMATICA, 1991, 167 (1-2) : 107 - 126
  • [4] Cameron R. H., 1960, J. Math. Phys. (N.Y.), V39, P126, DOI 0.1002/sapm1960391126
  • [5] CAMERON RH, 1983, MEM AM MATH SOC, V46, P1
  • [6] RELATIVISTIC SCHRODINGER-OPERATORS - ASYMPTOTIC-BEHAVIOR OF THE EIGENFUNCTIONS
    CARMONA, R
    MASTERS, WC
    SIMON, B
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 91 (01) : 117 - 142
  • [7] CONCENTRATION PHENOMENON FOR FRACTIONAL NONLINEAR SCHRODINGER EQUATIONS
    Chen, Guoyuan
    Zheng, Youquan
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (06) : 2359 - 2376
  • [8] Chen W., 2004, PREPRINT
  • [9] Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian
    Choi, Woocheol
    Kim, Seunghyeok
    Lee, Ki-Ahm
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (11) : 6531 - 6598
  • [10] Concentrating standing waves for the fractional nonlinear Schrodinger equation
    Davila, Juan
    del Pino, Manuel
    Wei, Juncheng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (02) : 858 - 892