Unsupervised delineation of stratum corneum using reflectance confocal microscopy and spectral clustering

被引:10
作者
Bozkurt, A. [1 ]
Kose, K. [2 ]
Alessi-Fox, C. [3 ]
Dy, J. G. [1 ]
Brooks, D. H. [1 ]
Rajadhyaksha, M. [2 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, 360 Huntington Ave, Boston, MA 02115 USA
[2] Mem Sloan Kettering Canc Ctr, Dermatol Serv, 1275 York Ave, New York, NY 10021 USA
[3] Caliber Imaging & Diagnost, Rochester, NY USA
关键词
reflectance confocal microscopy; stratum corneum; spectral clustering; unsupervised segmentation; IN-VIVO; THICKNESS; SKIN;
D O I
10.1111/srt.12316
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background: Measuring the thickness of the stratum corneum (SC) in vivo is often required in pharmacological, dermatological, and cosmetological studies. Reflectance confocal microscopy (RCM) offers a non-invasive imaging-based approach. However, RCM-based measurements currently rely on purely visual analysis of images, which is time-consuming and suffers from inter-user subjectivity. Methods: We developed an unsupervised segmentation algorithm that can automatically delineate the SC layer in stacks of RCM images of human skin. We represent the unique textural appearance of SC layer using complex wavelet transform and distinguish it from deeper granular layers of skin using spectral clustering. Moreover, through localized processing in a matrix of small areas (called tiles'), we obtain lateral variation of SC thickness over the entire field of view. Results: On a set of 15 RCM stacks of normal human skin, our method estimated SC thickness with a mean error of 5.4 5.1 m compared to the ground truth' segmentation obtained from a clinical expert. Conclusion: Our algorithm provides a non-invasive RCM imaging-based solution which is automated, rapid, objective, and repeatable.
引用
收藏
页码:176 / 185
页数:10
相关论文
共 50 条
[41]   Case Report: Diagnosis of Primary Cutaneous Amyloidosis Using Dermoscopy and Reflectance Confocal Microscopy [J].
Wang, Xiuli ;
Wang, Hui ;
Zhong, Zhenyu ;
Zheng, Liyun ;
Wang, Yifan ;
Guo, Ze ;
Li, Hui ;
Gao, Min .
FRONTIERS IN MEDICINE, 2021, 7
[42]   Visualizing the in-vivo application of zinc in sensitive skin using reflectance confocal microscopy [J].
Ahn, Hye-Jin ;
Kim, Hae Jin ;
Ham, Hyein ;
Baek, Ji Hwoon ;
Lee, Young ;
Alamgir, Mahin ;
Rao, Babar ;
Shin, Min Kyung .
SCIENTIFIC REPORTS, 2021, 11 (01)
[43]   Assessment of atopic dermatitis in all phototypes using line-field confocal optical coherence tomography (LC-OCT) and reflectance confocal microscopy (RCM) [J].
Ouellette, Samantha ;
Truong, Thu Minh ;
Khan, Samavia ;
Ragi, Sara ;
Razi, Shazli ;
Rao, Babar .
JEADV CLINICAL PRACTICE, 2024, 3 (03) :817-826
[44]   Unsupervised anchor shot detection using multi-modal spectral clustering [J].
Ma, Chengyuan ;
Lee, Chin-Hui .
2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, :813-816
[45]   Unsupervised mitochondria segmentation using recursive spectral clustering and adaptive similarity models [J].
Dietlmeier, Julia ;
Ghita, Ovidiu ;
Duessmann, Heiko ;
Prehn, Jochen H. M. ;
Whelan, Paul F. .
JOURNAL OF STRUCTURAL BIOLOGY, 2013, 184 (03) :401-408
[46]   Analysis of Unsupervised Machine Learning Techniques for an Efficient Customer Segmentation using Clustering Ensemble and Spectral Clustering [J].
Hicham, Nouri ;
Karim, Sabri .
INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) :122-130
[47]   Delineation of FDG-PET tumors from heterogeneous background using spectral clustering [J].
Yang, Fei ;
Grigsby, Perry W. .
EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (11) :3535-3541
[48]   Fuzzy spectral clustering for automated delineation of chronic wound region using digital images [J].
Dhane, Dhiraj Manohar ;
Maity, Maitreya ;
Mungle, Tushar ;
Bar, Chittaranjan ;
Achar, Arun ;
Kolekar, Maheshkumar ;
Chakraborty, Chandan .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :551-560
[49]   Rapid diagnosis of tinea incognito using handheld reflectance confocal microscopy: a paradigm shift in dermatology? [J].
Navarrete-Dechent, Cristian ;
Bajaj, Shirin ;
Marghoob, Ashfaq A. ;
Marchetti, Michael A. .
MYCOSES, 2015, 58 (06) :383-386
[50]   Zinc penetration through the skin barrier in atopic dermatitis and rosacea using reflectance confocal microscopy [J].
Ahn, Hye-Jin ;
Shin, Min Kyung .
EXPERIMENTAL DERMATOLOGY, 2024, 33 (01)