Unsupervised delineation of stratum corneum using reflectance confocal microscopy and spectral clustering

被引:10
作者
Bozkurt, A. [1 ]
Kose, K. [2 ]
Alessi-Fox, C. [3 ]
Dy, J. G. [1 ]
Brooks, D. H. [1 ]
Rajadhyaksha, M. [2 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, 360 Huntington Ave, Boston, MA 02115 USA
[2] Mem Sloan Kettering Canc Ctr, Dermatol Serv, 1275 York Ave, New York, NY 10021 USA
[3] Caliber Imaging & Diagnost, Rochester, NY USA
关键词
reflectance confocal microscopy; stratum corneum; spectral clustering; unsupervised segmentation; IN-VIVO; THICKNESS; SKIN;
D O I
10.1111/srt.12316
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background: Measuring the thickness of the stratum corneum (SC) in vivo is often required in pharmacological, dermatological, and cosmetological studies. Reflectance confocal microscopy (RCM) offers a non-invasive imaging-based approach. However, RCM-based measurements currently rely on purely visual analysis of images, which is time-consuming and suffers from inter-user subjectivity. Methods: We developed an unsupervised segmentation algorithm that can automatically delineate the SC layer in stacks of RCM images of human skin. We represent the unique textural appearance of SC layer using complex wavelet transform and distinguish it from deeper granular layers of skin using spectral clustering. Moreover, through localized processing in a matrix of small areas (called tiles'), we obtain lateral variation of SC thickness over the entire field of view. Results: On a set of 15 RCM stacks of normal human skin, our method estimated SC thickness with a mean error of 5.4 5.1 m compared to the ground truth' segmentation obtained from a clinical expert. Conclusion: Our algorithm provides a non-invasive RCM imaging-based solution which is automated, rapid, objective, and repeatable.
引用
收藏
页码:176 / 185
页数:10
相关论文
共 50 条
[31]   Analysis of the temporal change in biophysical parameters after fractional laser treatments using reflectance confocal microscopy [J].
Shin, Min-Kyung ;
Kim, Min-Joong ;
Baek, Ji-Hwoon ;
Yoo, Mi-Ae ;
Koh, Jae-Sook ;
Lee, Sang-Jun ;
Lee, Mu-Hyoung .
SKIN RESEARCH AND TECHNOLOGY, 2013, 19 (01) :E515-E520
[32]   In Situ Observation of Stratum Corneum Using Cantilever-assisted Two-beam Interference Microscopy [J].
Yanagiya, Shin-ichiro ;
Katayama, Hiroshi ;
Goto, Nobuo .
CHEMISTRY LETTERS, 2012, 41 (10) :1365-1367
[33]   Evaluating residual melanocytic atypia in a post-excision scar using in vivo reflectance confocal microscopy [J].
Khan, Samavia ;
Chuchvara, Nadiya ;
Cucalon, Jennifer ;
Haroon, Attiya ;
Rao, Babar .
SKIN RESEARCH AND TECHNOLOGY, 2021, 27 (05) :985-987
[34]   UNSUPERVISED CLASSIFICATION OF POLSAR DATA USING LARGE SCALE SPECTRAL CLUSTERING [J].
Lin, Li-Qi ;
Song, Hui ;
Huang, Ping-Ping ;
Yang, Wen ;
Xu, Xin .
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
[35]   Unsupervised seismic facies analysis using sparse representation spectral clustering [J].
Wang Yao-Jun ;
Wang Liang-Ji ;
Li Kun-Hong ;
Liu Yu ;
Luo Xian-Zhe ;
Xing Kai .
Applied Geophysics, 2020, 17 :533-543
[36]   Unsupervised seismic facies analysis using sparse representation spectral clustering [J].
Wang Yao-Jun ;
Wang Liang-Ji ;
Li Kun-Hong ;
Liu Yu ;
Luo Xian-Zhe ;
Xing Kai .
APPLIED GEOPHYSICS, 2020, 17 (04) :533-543
[37]   Towards data-driven quantification of skin ageing using reflectance confocal microscopy [J].
Hames, Samuel C. ;
Bradley, Andrew P. ;
Ardigo, Marco ;
Soyer, H. Peter ;
Prow, Tarl W. .
INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, 2021, 43 (04) :466-473
[38]   Correlation of dermoscopic globule-like structures of dermatofibroma using reflectance confocal microscopy [J].
Scope, Alon ;
Ardigo, Marco ;
Marghoob, Ashfaq A. .
DERMATOLOGY, 2008, 216 (01) :81-82
[39]   Convolutional Neural Network Approach to Classify Skin Lesions Using Reflectance Confocal Microscopy [J].
Wodzinski, Marek ;
Skalski, Andrzej ;
Witkowski, Alexander ;
Pellacani, Giovanni ;
Ludzik, Joanna .
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, :4754-4757
[40]   No wonder it itches: quick bedside visualization of a scabies infestation using reflectance confocal microscopy [J].
Francisco, Gina ;
Eilers, Steven ;
Haroon, Attiya ;
Virmani, Pooja ;
Cha, Jisun ;
Pappert, Amy ;
Rao, Babar .
JOURNAL OF CUTANEOUS PATHOLOGY, 2018, 45 (12) :877-879