Unsupervised delineation of stratum corneum using reflectance confocal microscopy and spectral clustering

被引:10
作者
Bozkurt, A. [1 ]
Kose, K. [2 ]
Alessi-Fox, C. [3 ]
Dy, J. G. [1 ]
Brooks, D. H. [1 ]
Rajadhyaksha, M. [2 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, 360 Huntington Ave, Boston, MA 02115 USA
[2] Mem Sloan Kettering Canc Ctr, Dermatol Serv, 1275 York Ave, New York, NY 10021 USA
[3] Caliber Imaging & Diagnost, Rochester, NY USA
关键词
reflectance confocal microscopy; stratum corneum; spectral clustering; unsupervised segmentation; IN-VIVO; THICKNESS; SKIN;
D O I
10.1111/srt.12316
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
Background: Measuring the thickness of the stratum corneum (SC) in vivo is often required in pharmacological, dermatological, and cosmetological studies. Reflectance confocal microscopy (RCM) offers a non-invasive imaging-based approach. However, RCM-based measurements currently rely on purely visual analysis of images, which is time-consuming and suffers from inter-user subjectivity. Methods: We developed an unsupervised segmentation algorithm that can automatically delineate the SC layer in stacks of RCM images of human skin. We represent the unique textural appearance of SC layer using complex wavelet transform and distinguish it from deeper granular layers of skin using spectral clustering. Moreover, through localized processing in a matrix of small areas (called tiles'), we obtain lateral variation of SC thickness over the entire field of view. Results: On a set of 15 RCM stacks of normal human skin, our method estimated SC thickness with a mean error of 5.4 5.1 m compared to the ground truth' segmentation obtained from a clinical expert. Conclusion: Our algorithm provides a non-invasive RCM imaging-based solution which is automated, rapid, objective, and repeatable.
引用
收藏
页码:176 / 185
页数:10
相关论文
共 31 条
[1]  
Abdelnour A.F., 2001, P IEEE INT C AC SPEE, V6
[2]  
Abrmoff MD., 2004, Image Processing with ImageJ, V11, P36, DOI DOI 10.1201/9781420005615.AX4
[3]  
[Anonymous], SEG3D VOL IM SEGM VI
[4]   Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy [J].
Boehling, A. ;
Bielfeldt, S. ;
Himmelmann, A. ;
Keskin, M. ;
Wilhelm, K-P .
SKIN RESEARCH AND TECHNOLOGY, 2014, 20 (01) :50-57
[5]   In vivo confocal Raman microspectroscopy of the skin:: Noninvasive determination of molecular concentration profiles [J].
Caspers, PJ ;
Lucassen, GW ;
Carter, EA ;
Bruining, HA ;
Puppels, GJ .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2001, 116 (03) :434-442
[6]   Multiscale texture classification using dual-tree complex wavelet transform [J].
Celik, Turgay ;
Tjahjadi, Tardi .
PATTERN RECOGNITION LETTERS, 2009, 30 (03) :331-339
[7]   Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo [J].
Crowther, J. M. ;
Sieg, A. ;
Blenkiron, P. ;
Marcott, C. ;
Matts, P. J. ;
Kaczvinsky, R. ;
Rawlings, A. V. .
BRITISH JOURNAL OF DERMATOLOGY, 2008, 159 (03) :567-577
[8]   In vivo estimation of stratum corneum thickness from water concentration profiles obtained with Raman spectroscopy [J].
Egawa, Mariko ;
Hirao, Tetsuji ;
Takahashi, Motoji .
ACTA DERMATO-VENEREOLOGICA, 2007, 87 (01) :4-8
[9]   AN ADAPTIVE FILTER FOR SMOOTHING NOISY RADAR IMAGES [J].
FROST, VS ;
STILES, JA ;
SHANMUGAM, KS ;
HOLTZMAN, JC ;
SMITH, SA .
PROCEEDINGS OF THE IEEE, 1981, 69 (01) :133-135
[10]  
Fruhstorfer H, 2000, CLIN ANAT, V13, P429, DOI 10.1002/1098-2353(2000)13:6<429::AID-CA6>3.0.CO