Growth of Sobolev norms for abstract linear Schrodinger equations
被引:26
|
作者:
Bambusi, Dario
论文数: 0引用数: 0
h-index: 0
机构:
Univ Milan, Dipartimento Matemat Federico Enriques, Via Saldini 50, I-20133 Milan, ItalyUniv Milan, Dipartimento Matemat Federico Enriques, Via Saldini 50, I-20133 Milan, Italy
Bambusi, Dario
[1
]
Grebert, Benoit
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nantes, Lab Math Jean Leray, 2 Rue Houssiniere BP 92208, F-44322 Nantes 3, FranceUniv Milan, Dipartimento Matemat Federico Enriques, Via Saldini 50, I-20133 Milan, Italy
Grebert, Benoit
[2
]
Maspero, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, ItalyUniv Milan, Dipartimento Matemat Federico Enriques, Via Saldini 50, I-20133 Milan, Italy
Maspero, Alberto
[3
]
Robert, Didier
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nantes, Lab Math Jean Leray, 2 Rue Houssiniere BP 92208, F-44322 Nantes 3, FranceUniv Milan, Dipartimento Matemat Federico Enriques, Via Saldini 50, I-20133 Milan, Italy
Robert, Didier
[2
]
机构:
[1] Univ Milan, Dipartimento Matemat Federico Enriques, Via Saldini 50, I-20133 Milan, Italy
[2] Univ Nantes, Lab Math Jean Leray, 2 Rue Houssiniere BP 92208, F-44322 Nantes 3, France
[3] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
Linear Schrodinger operators;
time-dependent Hamiltonians;
growth in time of Sobolev norms;
TIME;
REDUCIBILITY;
PERTURBATIONS;
EXPECTATION;
STABILITY;
OPERATORS;
BOUNDS;
D O I:
10.4171/JEMS/1017
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We prove an abstract theorem giving a < t >(epsilon) bound (for all epsilon > 0) on the growth of the Sobolev norms in linear Schrodinger equations of the form i(psi)over dot = H-0 psi V(t)psi as t -> infinity. The abstract theorem is applied to several cases, including the cases where (i) H-0 is the Laplace operator on a Zoll manifold and V(t) a pseudodifferential operator of order smaller than 2; (ii) H-0 is the (resonant or nonresonant) harmonic oscillator in R-d and V(t) a pseudodifferential operator of order smaller than that of H-0 depending in a quasiperiodic way on time. The proof is obtained by first conjugating the system to some normal form in which the perturbation is a smoothing operator and then applying the results of [MR17].