hp non-conforming a priori error analysis of an Interior Penalty Discontinuous Galerkin BEM for the Helmholtz equation

被引:1
作者
Nadir-Alexandre, Messai [1 ]
Sebastien, Pernet [1 ]
机构
[1] Univ Fed Toulouse, ONERA DTIS, F-31000 Toulouse, France
关键词
Integral equation; Boundary element method; Helmholtz equation; Discontinuous Galerkin; hp a priori error analysis; Non-conforming mesh; BOUNDARY-ELEMENT METHOD; FINITE-ELEMENTS; APPROXIMATION; SURFACES; LAYER;
D O I
10.1016/j.camwa.2020.10.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with the construction and the hp non-conforming a priori error analysis of a Discontinuous Galerkin DG numerical scheme applied to the hypersingular integral equation related to the Helmholtz problem in 3D. The main results of this article are an error bound in a norm suited to the problem and in the L-2-norm. Those bounds are quasi-optimal for the h-convergence and the p-convergence. Various formulation choices and penalty functions are theoretically discussed. In particular we show that a penalty function of the shape h(2)/p Some numerical experiments confirm the expected rates of convergence and the effect of the penalty function. leads to a quasi-optimal convergence of the scheme. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2644 / 2675
页数:32
相关论文
共 37 条
[1]  
[Anonymous], 2000, TECH REP
[2]   Bayliss-Turkel-lilte radiation conditions on surfaces of arbitrary shape [J].
Antoine, X ;
Barucq, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (01) :184-211
[3]  
Bakry M., 2016, THESIS
[4]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[5]  
BRUCKNER F, 2014, ARCH COMPUT METHODS, V24, DOI DOI 10.1142/S0218202514500328
[6]   Residual-based a posteriori error estimate for hypersingular equation on surfaces - Dedicated to W. L. Wendland on the occasion of his 65th birthday [J].
Carstensen, C ;
Maischak, M ;
Praetorius, D ;
Stephan, EP .
NUMERISCHE MATHEMATIK, 2004, 97 (03) :397-425
[7]   INTERPOLATION OF HILBERT AND SOBOLEV SPACES: QUANTITATIVE ESTIMATES AND COUNTEREXAMPLES [J].
Chandler-Wilde, S. N. ;
Hewett, D. P. ;
Moiola, A. .
MATHEMATIKA, 2015, 61 (02) :414-443
[8]   A Nitsche-based domain decomposition method for hypersingular integral equations [J].
Chouly, Franz ;
Heuer, Norbert .
NUMERISCHE MATHEMATIK, 2012, 121 (04) :705-729
[9]   BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS [J].
COSTABEL, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (03) :613-626