CO2 sorption by microbial cells and sterilization by high-pressure CO2

被引:42
|
作者
Kumagai, H
Hata, C
Nakamura, K
机构
[1] Department of Applied Biological Chemistry, Division of Agriculture and Agricultural Life Sciences, The University of Tokyo, Tokyo, 113, 1-1-1 Yayoi, Bunkyo-ku
关键词
sterilization; carbon dioxide; Saccharomyces cerevisiae; sorption; water content;
D O I
10.1271/bbb.61.931
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The amount of CO2 sorbed by microbial cells in a Saccharomyces cerevisiae-water system was measured by a gravimetric method with a quartz spring, and the correlation between CO2 sorption and the sterilization effect of high-pressure CO2 was investigated. The sterilization rate of Saccharomyces cerevisiae by high-pressure CO2 was measured by varying the water content and CO2 pressure, and analyzed by reaction kinetics, The sterilization rate could be described by a first-order reaction, and the dependence of the sterilization rate constant, k, on the water content and CO2 pressure was evaluated, The amount of CO2 sorbed by the microbial cells reached equilibrium at a constant CO2 pressure within a few minutes and was correlated well with the value of k, In addition, the amount of unfreezable water was measured by DSC as an index of the state of water in the cell-water system, this being considered to be closely related to the amount of CO2 sorbed by the microbial cells, The value of k increased with increasing water content; however, the increase was only slight for a water content by which free water existed.
引用
收藏
页码:931 / 935
页数:5
相关论文
共 50 条
  • [31] Effect of High-pressure CO2 Processing on Bacterial Spores
    Rao, Lei
    Bi, Xiufang
    Zhao, Feng
    Wu, Jihong
    Hu, Xiaosong
    Liao, Xiaojun
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2016, 56 (11) : 1808 - 1825
  • [32] ELECTROCHEMICAL REDUCTION OF HIGH-PRESSURE CO2 ON NI ELECTRODES
    KUDO, A
    NAKAGAWA, S
    TSUNETO, A
    SAKATA, T
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1993, 140 (06) : 1541 - 1545
  • [33] A novel high-pressure photoreactor for CO2 photoconversion to fuels
    Rossetti, I.
    Villa, A.
    Pirola, C.
    Prati, L.
    Ramis, G.
    RSC ADVANCES, 2014, 4 (55) : 28883 - 28885
  • [34] Investigations of CO2 hydrogenation by high-pressure NMR spectroscopy
    Linehan, John
    Grubel, Katarzyna
    Preston, Andrew
    Appel, Aaron
    Flowers, Sarah
    Wiedner, Eric
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [35] Morphological changes of polycaprolactone with high-pressure CO2 treatment
    Shieh, YT
    Yang, HS
    JOURNAL OF SUPERCRITICAL FLUIDS, 2005, 33 (02): : 183 - 192
  • [36] THE EFFECT OF CO2 ON THE VISCOSITY OF SILICATE LIQUIDS AT HIGH-PRESSURE
    BREARLEY, M
    MONTANA, A
    GEOCHIMICA ET COSMOCHIMICA ACTA, 1989, 53 (10) : 2609 - 2616
  • [37] HIGH-PRESSURE PULSED CO2 CHEMICAL TRANSFER LASER
    POEHLER, TO
    WALKER, RE
    SHANDOR, M
    APPLIED PHYSICS LETTERS, 1972, 20 (12) : 497 - &
  • [38] Aftershocks driven by a high-pressure CO2 source at depth
    Miller, SA
    Collettini, C
    Chiaraluce, L
    Cocco, M
    Barchi, M
    Kaus, BJP
    NATURE, 2004, 427 (6976) : 724 - 727
  • [39] CHARACTERISTICS OF CO2 SEALED OFF AMPLIFIER OF HIGH-PRESSURE
    GONCHUKOV, SA
    KORNILOV, ST
    PROTSENKO, ED
    TRONIN, AY
    ZHURNAL TEKHNICHESKOI FIZIKI, 1978, 48 (03): : 556 - 559
  • [40] HIGH-PRESSURE PULSED CO2 CHEMICAL TRANSFER LASER
    POEHLER, TO
    PIRKLE, JC
    WALKER, RE
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1973, QE 9 (01) : 83 - 93