Sharp asymptotics of large deviations for general state-space Markov-additive chains in Rd

被引:7
作者
Iltis, M [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
asymptotic expansion; large deviations; rate function; Markov-additive random variables; general state-space Markov chain; regenerative process;
D O I
10.1016/S0167-7152(99)00181-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For {xi(i)} subset of R-d, i = 0, 1, 2, .... Markov-additive (MA) random variables, d greater than or equal to 2, S-n = Sigma(i)(= 0)(n) xi(i), and (X-n, S-n) a phi-irreducible, aperiodic, time-homogeneous MA-chain, a = inf(x epsilon) r I(x), we extend to general state-space chains, under a regeneration hypothesis, asymptotic results of the form P(S-n epsilon n Gamma;X-n epsilon A) = n(V)e(-na)(d(0) + o(l)) as n --> infinity. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:365 / 380
页数:16
相关论文
共 15 条
  • [11] Nagaev S. V., 1961, THEOR PROBAB APPL+, V6, P62, DOI [DOI 10.1137/1106005, 10.1137/1106005]
  • [12] Nagaev SV, 1957, THEOR PROBAB APPL, V2, P378, DOI 10.1137/1102029
  • [13] MARKOV ADDITIVE PROCESSES .1. EIGENVALUE PROPERTIES AND LIMIT-THEOREMS
    NEY, P
    NUMMELIN, E
    [J]. ANNALS OF PROBABILITY, 1987, 15 (02) : 561 - 592
  • [14] NEY P, 1987, ANN PROBAB, V15, P591
  • [15] Nummelin E, 1984, CAMBRIDGE TRACTS MAT, V83