SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane

被引:88
作者
Matsumoto, G [1 ]
Yoshihisa, T [1 ]
Ito, K [1 ]
机构
[1] KYOTO UNIV, INST VIRUS RES, SAKYO KU, KYOTO 60601, JAPAN
关键词
protein translocation; SecA insertion; SecY; suppressor mutation; translocation channel;
D O I
10.1093/emboj/16.21.6384
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
SecA, the preprotein-driving ATPase in Escherichia coli, was shown previously to insert deeply into the plasma membrane in the presence of ATP and a preprotein; this movement of SecA was proposed to be mechanistically coupled with preprotein translocation. We now address the role played by SecY, the central subunit of the membrane-embedded heterotrimeric complex, in the SecA insertion reaction. We identified a secY mutation (secY205), affecting the most carboxy-terminal cytoplasmic domain, that did not allow ATP and preprotein-dependent productive SecA insertion. while allowing idling insertion without the preprotein. Thus, the secY205 mutation might affect the SecYEG 'channel' structure in accepting the preprotein-SecA complex or its opening by the complex. We isolated secA mutations that allele-specifically suppressed the secY205 translocation defect in vivo. One mutant protein, SecA36, with an amino acid alteration near the high-affinity ATP-binding site, was purified and suppressed the in vitro translocation defect of the inverted membrane vesicles carrying the SecY205 protein. The SecA36 protein could also insert into the mutant membrane vesicles in vitro. These results provide genetic evidence that SecA and SecY specifically interact, and show that SecY plays an essential role in insertion of SecA in response to a preprotein and ATP and suggest that SecA drives protein translocation by inserting into the membrane in vivo.
引用
收藏
页码:6384 / 6393
页数:10
相关论文
共 55 条
[1]   SECY PROTEIN, A MEMBRANE-EMBEDDED SECRETION FACTOR OF ESCHERICHIA-COLI, IS CLEAVED BY THE OMPT PROTEASE INVITRO [J].
AKIYAMA, Y ;
ITO, K .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1990, 167 (02) :711-715
[2]   THE SECY MEMBRANE COMPONENT OF THE BACTERIAL PROTEIN EXPORT MACHINERY - ANALYSIS BY NEW ELECTROPHORETIC METHODS FOR INTEGRAL MEMBRANE-PROTEINS [J].
AKIYAMA, Y ;
ITO, K .
EMBO JOURNAL, 1985, 4 (12) :3351-3356
[3]   CHARACTERIZATION OF COLD-SENSITIVE SECY MUTANTS OF ESCHERICHIA-COLI [J].
BABA, T ;
JACQ, A ;
BRICKMAN, E ;
BECKWITH, J ;
TAURA, T ;
UEGUCHI, C ;
AKIYAMA, Y ;
ITO, K .
JOURNAL OF BACTERIOLOGY, 1990, 172 (12) :7005-7010
[4]   SUPPRESSOR ANALYSIS SUGGESTS A MULTISTEP, CYCLIC MECHANISM FOR PROTEIN SECRETION IN ESCHERICHIA-COLI [J].
BIEKERBRADY, K ;
SILHAVY, TJ .
EMBO JOURNAL, 1992, 11 (09) :3165-3174
[5]   Mechanism of polypeptide translocation into the endoplasmic reticulum [J].
Corsi, AK ;
Schekman, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (48) :30299-30302
[6]   PRO-OMPA SPONTANEOUSLY FOLDS IN A MEMBRANE ASSEMBLY COMPETENT STATE WHICH TRIGGER FACTOR STABILIZES [J].
CROOKE, E ;
BRUNDAGE, L ;
RICE, M ;
WICKNER, W .
EMBO JOURNAL, 1988, 7 (06) :1831-1835
[7]   THE SIGNAL SEQUENCE MOVES THROUGH A RIBOSOMAL TUNNEL INTO A NONCYTOPLASMIC AQUEOUS ENVIRONMENT AT THE ER MEMBRANE EARLY IN TRANSLOCATION [J].
CROWLEY, KS ;
REINHART, GD ;
JOHNSON, AE .
CELL, 1993, 73 (06) :1101-1115
[8]   SECRETORY PROTEINS MOVE THROUGH THE ENDOPLASMIC-RETICULUM MEMBRANE VIA AN AQUEOUS, GATED PORE [J].
CROWLEY, KS ;
LIAO, SR ;
WORRELL, VE ;
REINHART, GD ;
JOHNSON, AE .
CELL, 1994, 78 (03) :461-471
[9]   PRECURSOR PROTEIN TRANSLOCATION BY THE ESCHERICHIA-COLI TRANSLOCASE IS DIRECTED BY THE PROTONMOTIVE FORCE [J].
DRIESSEN, AJM .
EMBO JOURNAL, 1992, 11 (03) :847-853
[10]   Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme [J].
Duong, F ;
Wickner, W .
EMBO JOURNAL, 1997, 16 (10) :2756-2768