Twisted gauge theories

被引:66
|
作者
Aschieri, Paolo
Dimitrijevic, Marija
Meyer, Frank
Schraml, Stefan
Wess, Julius
机构
[1] Univ Piemonte Orientale, Dipartimento Sci & Tecnol Avanzate, I-15100 Alessandria, Italy
[2] Ist Nazl Fis Nucl, I-15100 Alessandria, Italy
[3] Univ Belgrade, Fac Phys, Belgrade 11000, Serbia
[4] DESY, Zentrum Math Phys, D-22607 Hamburg, Germany
[5] Univ Hamburg, D-22607 Hamburg, Germany
[6] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany
[7] Univ Munich, Arnold Sommerfeld Ctr Theoret Phys, Fak Phys, D-80333 Munich, Germany
关键词
deformed spaces; twisted gauge transformations; noncommutative gauge theories;
D O I
10.1007/s11005-006-0108-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Gauge theories on a space-time that is deformed by the Moyal-Weyl product are constructed by twisting the coproduct for gauge transformations. This way a deformed Leibniz rule is obtained, which is used to construct gauge invariant quantities. The connection will be enveloping algebra valued in a particular representation of the Lie algebra. This gives rise to additional fields, which couple only weakly via the deformation parameter theta and reduce in the commutative limit to free fields. Consistent field equations that lead to conservation laws are derived and some properties of such theories are discussed.
引用
收藏
页码:61 / 71
页数:11
相关论文
共 50 条
  • [21] Mathai-Quillen formulation of twisted N=4 supersymmetric gauge theories in four dimensions
    Labastida, JMF
    Lozano, C
    NUCLEAR PHYSICS B, 1997, 502 (03) : 741 - 790
  • [22] Properties of the twisted Polyakov loop coupling and the infrared fixed point in the SU(3) gauge theories
    Itou, Etsuko
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2013, 2013 (08):
  • [23] Ω-deformation of B-twisted gauge theories and the 3d-3d correspondence
    Luo, Yuan
    Tan, Meng-Chwan
    Yagi, Junya
    Zhao, Qin
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02): : 1 - 27
  • [24] Ω-deformation of B-twisted gauge theories and the 3d-3d correspondence
    Yuan Luo
    Meng-Chwan Tan
    Junya Yagi
    Qin Zhao
    Journal of High Energy Physics, 2015
  • [25] SU(2) AND SU(3) GAUGE-THEORIES ON A LATTICE WITH TWISTED BOUNDARY-CONDITIONS
    BARBOUR, IM
    PSYCHARIS, SJ
    NUCLEAR PHYSICS B, 1990, 334 (01) : 302 - 308
  • [26] Gauge theories beyond gauge theory
    Wess, J
    NONCOMMUTATIVE STRUCTURES IN MATHEMATICS AND PHYSICS, 2001, 22 : 1 - 11
  • [27] Gauge dependence in topological gauge theories
    Becchi, CM
    Giusto, S
    Imbimbo, C
    PHYSICS LETTERS B, 1997, 393 (3-4) : 342 - 348
  • [28] Generalizing twisted gauge invariance
    Duenas-Vidal, Alvaro
    Vazquez-Mozo, Miguel A.
    PHYSICS AND MATHEMATICS OF GRAVITATION, 2009, 1122 : 256 - 259
  • [29] On the consistency of twisted gauge theory
    Giller, Stefan
    Gonera, Cezary
    Kosinski, Piotr
    Maslanka, Pawel
    PHYSICS LETTERS B, 2007, 655 (1-2) : 80 - 83
  • [30] Gauge fixing and twisted prolongations
    Gaeta, Giuseppe
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (32)