Coalescence-induced self-propelled jumping of three droplets on non-wetting surfaces: Droplet arrangement effects

被引:8
|
作者
Wang, Yuhang [1 ]
Ming, Pingjian [1 ,2 ]
机构
[1] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Peoples R China
[2] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金;
关键词
DROPWISE CONDENSATION; SUPERHYDROPHOBIC SURFACES; NANOPARTICLES; SIMULATIONS;
D O I
10.1063/5.0033572
中图分类号
O59 [应用物理学];
学科分类号
摘要
Coalescence-induced self-propelled droplet jumping has attracted extensive attention because of its huge potential for enhancing dropwise condensation heat transfer, anti-icing, and self-cleaning. Most previous studies focus on binary droplet jumping, with little research on the more complex and realistic multi-droplet jumping. As a result, the effect of the droplet arrangement on the multi-droplet jumping phenomenon remains unclear. In this paper, the self-propelled jumping of three droplets with different arrangements (two droplets are fixed, and the location of the third one is changed) is numerically simulated, and energy conversion efficiency is studied. Based on two different forming mechanisms, region I (the coalescence between the lateral droplets forms the central liquid bridge) and region II (the changed interface curvature of central droplets turns into the central liquid bridge under surface tension) are defined in three-droplet arrangements. The liquid bridges exhibit different dynamic behaviors in two particular regions, even the jumping velocity is determined by the moving synchronicity of liquid bridges in each region. The critical distribution angle that leads to the overall nonmonotonic change of jumping velocities ranges between 110 degrees and 120 degrees (0.02 <= Oh <= 0.16). Compared with the symmetry of the droplet configuration, the geometry of the droplet arrangement plays a dominate role in the nonmonotonic change. The maximum energy conversion efficiency is just over 6.5% and the minimum is just under 3%. The findings of this study not only reveal how the arrangement affects ternary droplet jumping and explain the phenomenon that cannot be explained before, but deepens our understanding of multi-droplet jumping as well.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Influence of wavy-structured superhydrophobic surfaces on coalescence-induced droplet jumping
    Li Y.
    Li Q.
    Wang H.
    Zhu X.
    Chen R.
    Liao Q.
    Ding Y.
    Huagong Xuebao/CIESC Journal, 2022, 73 (10): : 4345 - 4354
  • [32] Investigation of Coalescence-Induced Droplet Jumping on Mixed-Wettability Superhydrophobic Surfaces
    Liao, Ming-Jun
    Duan, Li-Qiang
    PROCESSES, 2021, 9 (01) : 1 - 10
  • [33] Lattice Boltzmann simulations for self-propelled jumping of droplets after coalescence on a superhydrophobic surface
    Liu, Xiuliang
    Cheng, Ping
    Quan, Xiaojun
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 73 : 195 - 200
  • [34] Flexible and efficient regulation of coalescence-induced droplet jumping on superhydrophobic surfaces with string
    Gao, Sihang
    Hu, Zhifeng
    Yuan, Zhiping
    Wu, Xiaomin
    APPLIED PHYSICS LETTERS, 2021, 118 (19)
  • [35] Coalescence-Induced Self-Propulsion of Droplets on Superomniphobic Surfaces
    Vahabi, Hamed
    Wang, Wei
    Davies, Seth
    Mabry, Joseph M.
    Kota, Arun K.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (34) : 29328 - 29336
  • [36] Self-Enhancement of Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with an Asymmetric V-Groove
    Lu, Dunqiang
    Zhao, Meirong
    Zhang, Hanli
    Yong, Yang
    Zheng, Yelong
    LANGMUIR, 2020, 36 (19) : 5444 - 5453
  • [37] Numerical investigation of droplet condensation and self-propelled jumping on superhydrophobic microcolumned surfaces
    Huang, Biao
    Zhang, Xiwen
    Li, Xiangru
    Zhang, Haixiang
    He, Feng
    Hao, Pengfei
    Yao, Zhaohui
    PHYSICS OF FLUIDS, 2023, 35 (05)
  • [38] Enhancement and Guidance of Coalescence-Induced Jumping of Droplets on Superhydrophobic Surfaces with a U-Groove
    Liu, Chuntian
    Zhao, Meirong
    Zheng, Yelong
    Lu, Dunqiang
    Song, Le
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (27) : 32542 - 32554
  • [39] Effect of initial droplet position on coalescence-induced jumping on superhydrophobic surfaces with micropillar arrays
    Hou, Huimin
    Wu, Xiaomin
    Hu, Zhifeng
    Gao, Sihang
    Yuan, Zhiping
    PHYSICS OF FLUIDS, 2024, 36 (04)
  • [40] Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures
    Zhang, Peng
    Maeda, Yota
    Lv, Fengyong
    Takata, Yasuyuki
    Orejon, Daniel
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (40) : 35391 - 35403