Coalescence-induced self-propelled jumping of three droplets on non-wetting surfaces: Droplet arrangement effects

被引:8
|
作者
Wang, Yuhang [1 ]
Ming, Pingjian [1 ,2 ]
机构
[1] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Peoples R China
[2] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金;
关键词
DROPWISE CONDENSATION; SUPERHYDROPHOBIC SURFACES; NANOPARTICLES; SIMULATIONS;
D O I
10.1063/5.0033572
中图分类号
O59 [应用物理学];
学科分类号
摘要
Coalescence-induced self-propelled droplet jumping has attracted extensive attention because of its huge potential for enhancing dropwise condensation heat transfer, anti-icing, and self-cleaning. Most previous studies focus on binary droplet jumping, with little research on the more complex and realistic multi-droplet jumping. As a result, the effect of the droplet arrangement on the multi-droplet jumping phenomenon remains unclear. In this paper, the self-propelled jumping of three droplets with different arrangements (two droplets are fixed, and the location of the third one is changed) is numerically simulated, and energy conversion efficiency is studied. Based on two different forming mechanisms, region I (the coalescence between the lateral droplets forms the central liquid bridge) and region II (the changed interface curvature of central droplets turns into the central liquid bridge under surface tension) are defined in three-droplet arrangements. The liquid bridges exhibit different dynamic behaviors in two particular regions, even the jumping velocity is determined by the moving synchronicity of liquid bridges in each region. The critical distribution angle that leads to the overall nonmonotonic change of jumping velocities ranges between 110 degrees and 120 degrees (0.02 <= Oh <= 0.16). Compared with the symmetry of the droplet configuration, the geometry of the droplet arrangement plays a dominate role in the nonmonotonic change. The maximum energy conversion efficiency is just over 6.5% and the minimum is just under 3%. The findings of this study not only reveal how the arrangement affects ternary droplet jumping and explain the phenomenon that cannot be explained before, but deepens our understanding of multi-droplet jumping as well.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces
    Xuemei Chen
    Ravi S. Patel
    Justin A. Weibel
    Suresh V. Garimella
    Scientific Reports, 6
  • [22] Coalescence-Induced Jumping of Multiple Condensate Droplets on Hierarchical Superhydrophobic Surfaces
    Chen, Xuemei
    Patel, Ravi S.
    Weibel, Justin A.
    Garimella, Suresh V.
    SCIENTIFIC REPORTS, 2016, 6
  • [23] Coalescence-induced jumping of unequal-sized droplets on superhydrophobic surfaces
    Huang, Ting-en
    Zhang, Peng
    AIP ADVANCES, 2023, 13 (11)
  • [24] Coalescence-induced jumping of nanoscale droplets on super-hydrophobic surfaces
    Liang, Zhi
    Keblinski, Pawel
    APPLIED PHYSICS LETTERS, 2015, 107 (14)
  • [25] A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces
    Ling, Fengru
    Huang, Gang
    Tang, Hao
    Geng, Mengmeng
    Ye, Yutong
    Qin, Zhangrong
    3RD INTERNATIONAL CONFERENCE ON FLUID MECHANICS AND INDUSTRIAL APPLICATIONS, 2019, 1300
  • [26] Enhanced coalescence-induced droplet jumping on superhydrophobic surfaces with stepped structures
    Yin, Cuicui
    Wang, Tianyou
    Che, Zhizhao
    Wang, Juan
    Sun, Kai
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [27] Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces
    Chen, Xuemei
    Weibel, Justin A.
    Garimella, Suresh V.
    ACS OMEGA, 2017, 2 (06): : 2883 - 2890
  • [28] Critical size ratio for coalescence-induced droplet jumping on superhydrophobic surfaces
    Wang, Kai
    Li, Ruixin
    Liang, Qianqing
    Jiang, Rui
    Zheng, Yi
    Lan, Zhong
    Ma, Xuehu
    APPLIED PHYSICS LETTERS, 2017, 111 (06)
  • [29] Effects of the surface tension gradient and viscosity on coalescence-induced droplet jumping on superamphiphobic surfaces
    Hou, Huimin
    Yuan, Zhiping
    Hu, Zhifeng
    Gao, Sihang
    Wu, Xiaomin
    PHYSICS OF FLUIDS, 2021, 33 (11)
  • [30] Numerical simulation of the coalescence-induced polymeric droplet jumping on superhydrophobic surfaces
    Bazesefidpar, Kazem
    Brandt, Luca
    Tammisola, Outi
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2022, 307