An integrated lattice Boltzmann and finite volume method for the simulation of viscoelastic fluid flows

被引:37
作者
Zou, Shun [1 ,3 ]
Yuan, Xue-Feng [1 ,2 ]
Yang, Xuejun [1 ]
Yi, Wei [1 ]
Xu, Xinhai [1 ]
机构
[1] Natl Univ Def Technol, State Key Lab High Performance Comp, Changsha 410073, Hunan, Peoples R China
[2] Natl Supercomp Ctr Guangzhou, Guangzhou 510006, Guangdong, Peoples R China
[3] Xian Commun Coll, Xian 710106, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated scheme; Lattice Boltzmann method; Finite volume method; Viscoelastic fluid flows; VOLUME/ELEMENT METHOD; PLANAR CONTRACTION; REYNOLDS-NUMBER; OLDROYD-B; MODEL; CYLINDER; EQUATION; PROGRESS;
D O I
10.1016/j.jnnfm.2014.07.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A novel integrated scheme for modeling incompressible polymer viscoelastic fluid flows is proposed. Lattice Boltzmann method (LBM) is incorporated into finite volume method (FVM) to solve the incompressible Navier-Stokes equations and the constitutive equation respectively, and is implemented using open source CFD toolkits to predict nonlinear dynamics of polymer viscoelastic fluid flows. The hybrid numerical scheme inherits the efficiency and scalability of LBM and maintains the accuracy and generality of FVM. It has been critically validated using the Oldroyd-B model and linear PTT model under Poiseuille flow, Taylor-Green vortex flow and 4: 1 abrupt planar contraction flow, respectively. The results from the integrated scheme have good agreement with the analytical solutions and the numerical results of other FVM schemes in previous publications. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:99 / 113
页数:15
相关论文
共 39 条
[31]   Polymer solution characterization with the FENE-P model [J].
Purnode, B ;
Crochet, MJ .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1998, 77 (1-2) :1-20
[32]   LATTICE BGK MODELS FOR NAVIER-STOKES EQUATION [J].
QIAN, YH ;
DHUMIERES, D ;
LALLEMAND, P .
EUROPHYSICS LETTERS, 1992, 17 (6BIS) :479-484
[33]   Representation of stokes flow through a planar contraction by Papkovich-Fadle eigenfunctions [J].
Rogerson, MA ;
Yeow, YL .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1999, 66 (04) :940-944
[34]   Stability analysis of lattice Boltzmann methods [J].
Sterling, JD ;
Chen, SY .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 123 (01) :196-206
[35]   Lattice Boltzmann method for the simulation of viscoelastic fluid flows over a large range of Weissenberg numbers [J].
Su, Jin ;
Ouyang, Jie ;
Wang, Xiaodong ;
Yang, Binxing ;
Zhou, Wen .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2013, 194 :42-59
[36]   A finite difference technique for simulating unsteady viscoelastic free surface flows [J].
Tomé, MF ;
Mangiavacchi, N ;
Cuminato, JA ;
Castelo, A ;
McKee, S .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2002, 106 (2-3) :61-106
[37]   KINETIC-THEORY AND RHEOLOGY OF DILUTE SUSPENSIONS OF FINITELY EXTENDIBLE DUMBBELLS [J].
WARNER, HR .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1972, 11 (03) :379-&
[38]  
Waters N. D., 1970, Rheologica Acta, V9, P345, DOI 10.1007/BF01975401
[39]   Numerical modelling of transient viscoelastic flows [J].
Xue, SC ;
Tanner, RI ;
Phan-Thien, N .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2004, 123 (01) :33-58