New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentration

被引:114
作者
Gamage, Dananjali [1 ,4 ]
Thompson, Michael [1 ]
Sutherland, Mark [1 ]
Hirotsu, Naoki [1 ,2 ]
Makino, Amane [3 ]
Seneweera, Saman [1 ,4 ]
机构
[1] Univ Southern Queensland, Ctr Crop Hlth, Toowoomba, Qld 4350, Australia
[2] Toyo Univ, Fac Life Sci, Itakura, Gunma 3740193, Japan
[3] Tohoku Univ, Grad Sch Agr Sci, Div Life Sci, Sendai, Miyagi 9818555, Japan
[4] Univ Ruhuna, Fac Agr, Dept Agr Biol, Kamburupitiya 81100, Sri Lanka
关键词
carbon metabolism; cell cycle; climate change; elevated [CO2] (e[CO2]); hormonal metabolism; nitrogen metabolism; photosynthesis; plant growth mechanism; source-sink interactions; PHOTOSYNTHETIC ACCLIMATION; CO2; CONCENTRATION; ROOT-GROWTH; LONG-TERM; LEAF PHOTOSYNTHESIS; GENE-EXPRESSION; RICE LEAVES; GUARD-CELLS; NITROGEN ACQUISITION; NITRATE ASSIMILATION;
D O I
10.1111/pce.13206
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rising atmospheric carbon dioxide concentration ([CO2]) significantly influences plant growth, development, and biomass. Increased photosynthesis rate, together with lower stomatal conductance, has been identified as the key factors that stimulate plant growth at elevated [CO2] (e[CO2]). However, variations in photosynthesis and stomatal conductance alone cannot fully explain the dynamic changes in plant growth. Stimulation of photosynthesis at e[CO2] is always associated with post-photosynthetic secondary metabolic processes that include carbon and nitrogen metabolism, cell cycle functions, and hormonal regulation. Most studies have focused on photosynthesis and stomatal conductance in response to e[CO2], despite the emerging evidence of e[CO2]'s role in moderating secondary metabolism in plants. In this review, we briefly discuss the effects of e[CO2] on photosynthesis and stomatal conductance and then focus on the changes in other cellular mechanisms and growth processes at e[CO2] in relation to plant growth and development. Finally, knowledge gaps in understanding plant growth responses to e[CO2] have been identified with the aim of improving crop productivity under a CO2 rich atmosphere.
引用
收藏
页码:1233 / 1246
页数:14
相关论文
共 158 条
[1]   What have we learned from 15 years of free-air CO2 enrichment (FACE)?: A meta-analytic review of the responses of photosynthesis, canopy [J].
Ainsworth, EA ;
Long, SP .
NEW PHYTOLOGIST, 2005, 165 (02) :351-371
[2]   Testing the "source-sink" hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max [J].
Ainsworth, EA ;
Rogers, A ;
Nelson, R ;
Long, SP .
AGRICULTURAL AND FOREST METEOROLOGY, 2004, 122 (1-2) :85-94
[3]   Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term?: A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE) [J].
Ainsworth, EA ;
Davey, PA ;
Hymus, GJ ;
Osborne, CP ;
Rogers, A ;
Blum, H ;
Nösberger, J ;
Long, SP .
PLANT CELL AND ENVIRONMENT, 2003, 26 (05) :705-714
[4]   Next generation of elevated [CO2] experiments with crops:: a critical investment for feeding the future world [J].
Ainsworth, Elizabeth A. ;
Beier, Claus ;
Calfapietra, Carlo ;
Ceulemans, Reinhart ;
Durand-Tardif, Mylene ;
Farquhar, Graham D. ;
Godbold, Douglas L. ;
Hendrey, George R. ;
Hickler, Thomas ;
Kaduk, Joerg ;
Karnosky, David F. ;
Kimball, Bruce A. ;
Koerner, Christian ;
Koornneef, Maarten ;
Lafarge, Tanguy ;
Leakey, Andrew D. B. ;
Lewin, Keith F. ;
Long, Stephen P. ;
Manderscheid, Remy ;
Mcneil, David L. ;
Mies, Timothy A. ;
Miglietta, Franco ;
Morgan, Jack A. ;
Nagy, John ;
Norby, Richard J. ;
Norton, Robert M. ;
Percy, Kevin E. ;
Rogers, Alistair ;
Soussana, Jean-Francois ;
Stitt, Mark ;
Weigel, Hans-Joachim ;
White, Jeffrey W. .
PLANT CELL AND ENVIRONMENT, 2008, 31 (09) :1317-1324
[5]   The response of photosynthesis and stomatal conductance to rising [CO2]:: mechanisms and environmental interactions [J].
Ainsworth, Elizabeth A. ;
Rogers, Alistair .
PLANT CELL AND ENVIRONMENT, 2007, 30 (03) :258-270
[6]   The effects of elevated CO2 concentration on soybean gene expression.: An analysis of growing and mature leaves [J].
Ainsworth, Elizabeth A. ;
Rogers, Alistair ;
Vodkin, Lila O. ;
Walter, Achim ;
Schurr, Ulrich .
PLANT PHYSIOLOGY, 2006, 142 (01) :135-147
[7]   Carbohydrate Export from the Leaf: A Highly Regulated Process and Target to Enhance Photosynthesis and Productivity [J].
Ainsworth, Elizabeth A. ;
Bush, Daniel R. .
PLANT PHYSIOLOGY, 2011, 155 (01) :64-69
[8]  
Alexandratos N., 2012, ESA Working paper No. 12-03, DOI 10.22004/ag.econ.288998
[9]   Growth in elevated CO2 enhances temperature response of photosynthesis in wheat [J].
Alonso, Aitor ;
Perez, Pilar ;
Martinez-Carrasco, Rafael .
PHYSIOLOGIA PLANTARUM, 2009, 135 (02) :109-120
[10]   Effects of elevated CO2 concentration on photosynthetic carbon metabolism in flag-leaf blades of rice before and after heading [J].
Aoki, N ;
Ono, K ;
Sasaki, H ;
Seneweera, SP ;
Sakai, H ;
Kobayashi, K ;
Ishimaru, K .
PLANT PRODUCTION SCIENCE, 2003, 6 (01) :52-58