Frequency Difference Thermally and Electrically Tunable Dual-Frequency Nd:YAG/LiTaO3 Microchip Laser

被引:5
作者
Gui, Kun [1 ]
Zhang, Zilong [1 ]
Xing, Yuxiao [1 ]
Zhang, Haiyang [1 ]
Zhao, Changming [1 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, 5 South Zhongguancun St, Beijing 100081, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2019年 / 9卷 / 10期
基金
中国国家自然科学基金;
关键词
microwave photonics; tunable dual frequency; microchip laser; electro-optic effect; thermo-optic effect; TERAHERTZ SIGNALS; STABILIZATION; MICROWAVE; LOOP;
D O I
10.3390/app9101969
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study presents a dual-frequency microchip laser with a thermo-optically and electro-optically tuned frequency difference. The dual-frequency microchip cavity is formed by bonding a Lithium tantalite (LiTaO3, LTO) crystal chip and a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal chip. A single longitudinal mode is generated by the Nd:YAG crystal and split into two frequencies with perpendicular polarizations due to birefringent effect in the LTO chip. Furthermore, continuous beat frequency tuning at different scales is realized by adjusting the temperature and voltage applied to the LTO crystal. A maximum beat frequency of up to 27 GHz is obtained, and the frequency difference lock-in phenomenon is observed below the frequency difference of 405 MHz.
引用
收藏
页数:8
相关论文
共 21 条
[1]   Dual-polarization microchip laser at 1.53 μm [J].
Brunel, M ;
Amon, A ;
Vallet, M .
OPTICS LETTERS, 2005, 30 (18) :2418-2420
[2]   Generation of tunable high-purity microwave and terahertz signals by two-frequency solid-state lasers [J].
Brunel, M ;
Lai, ND ;
Vallet, M ;
Le Floch, A ;
Bretenaker, F ;
Morvan, L ;
Dolfi, D ;
Huignard, JP ;
Blanc, S ;
Merlet, T .
MICROWAVE AND TERAHERTZ PHOTONICS, 2004, 5466 :131-139
[3]   Self-mixing birefringent dual-frequency laser Doppler velocimeter [J].
Chen, Junbao ;
Zhu, Hongbin ;
Xia, Wei ;
Guo, Dongmei ;
Hao, Hui ;
Wang, Ming .
OPTICS EXPRESS, 2017, 25 (02) :560-572
[4]   Diode-pumped cw tunable two-frequency YAG:Nd3+ laser with coupled resonators [J].
Gudelev, VG ;
Mashko, VV ;
Nikeenko, NK ;
Ryabtsev, GI ;
Stalmashonak, AB ;
Teplyashin, LL .
APPLIED PHYSICS B-LASERS AND OPTICS, 2003, 76 (03) :249-252
[5]   Microchip dual-frequency laser with well-balanced intensity utilizing temperature control [J].
Hu, Miao ;
Zhang, Yu ;
Wei, Mian ;
Zeng, Ran ;
Li, Qiliang ;
Lu, Yang ;
Wei, Yizhen .
OPTICS EXPRESS, 2016, 24 (20) :23383-23389
[6]  
Huang C.N., 2002, CHIN J LASERS, V11, P229, DOI [10.2753/CSH0009-4633350347, DOI 10.2753/CSH0009-4633350347]
[7]   Zeeman-birefringence He-Ne dual frequency lasers [J].
Jin, YY ;
Zhang, SL ;
Li, Y ;
Guo, JH ;
Li, JQ .
CHINESE PHYSICS LETTERS, 2001, 18 (04) :533-536
[8]   Frequency difference stabilization in dual-frequency laser by stress-induced birefringence closed-loop control [J].
Li, Jiyang ;
Niu, Yanxiong ;
Niu, Haisha .
APPLIED OPTICS, 2016, 55 (16) :4357-4361
[9]   Tunable Terahertz Signals Using a Helicoidally Polarized Ceramic Microchip Laser [J].
McKay, Aaron ;
Dawes, Judith M. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (07) :480-482
[10]  
Onori D., 2016, P RAD C RADARCONF PH