Real-time Raman detection by the cavity mode enhanced Raman scattering

被引:23
作者
Liu, Yang [1 ,2 ,3 ]
Tian, Xiaorui [4 ]
Guo, Weiran [1 ,2 ,3 ]
Wang, Wenqiang [1 ,2 ,3 ]
Guan, Zhiqiang [1 ,2 ,3 ]
Xu, Hongxing [1 ,2 ,3 ,5 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Ctr Nanosci & Nanotechnol, Wuhan 430072, Hubei, Peoples R China
[3] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Hubei, Peoples R China
[4] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Jinan 250014, Shandong, Peoples R China
[5] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
surface enhanced Raman scattering; cavity modes; microfluidics; bi-analyte; real-time detection; SELF-ASSEMBLED MONOLAYERS; SINGLE-MOLECULE; SPECTROSCOPY; SERS; NANOPARTICLES; DEPENDENCE; DNA;
D O I
10.1007/s12274-019-2414-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Integrating surface enhanced Raman scattering with microfluidics is the long-term goal for reduced volume, multiplex and automation fingerprint detection of biomolecules. High sensitivity, repeatability, stability, reusability and real-time detection are the performance goals of Raman detection in the aqueous solution environment. Here, we reported the study on cavity mode enhanced SERS detection of both surface-adsorbed molecules and non-surface-adsorbed molecules in the solution environment. The cavity modes had important influence on the SERS enhancement, especially for the non-surface adsorbed molecules. Uniform, repeatable, reusable and real-time Raman signal detection of the non-surface adsorbed Rhodamine 6G molecules was demonstrated. Our work is an important step for the practical on-chip microfluidic Raman detection applications.
引用
收藏
页码:1643 / 1649
页数:7
相关论文
共 56 条
[31]   Large-Area Hybrid Plasmonic Optical Cavity (HPOC) Substrates for Surface-Enhanced Raman Spectroscopy [J].
Liu, Bowen ;
Yao, Xu ;
Chen, Shu ;
Lin, Haixin ;
Yang, Zhilin ;
Liu, Shou ;
Ren, Bin .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (43)
[32]   Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering [J].
Mao, Li ;
Li, Zhipeng ;
Wu, Biao ;
Xu, Hongxing .
APPLIED PHYSICS LETTERS, 2009, 94 (24)
[33]   Probing single molecules and single nanoparticles by surface-enhanced Raman scattering [J].
Nie, SM ;
Emery, SR .
SCIENCE, 1997, 275 (5303) :1102-1106
[34]   Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence [J].
Orendorff, CJ ;
Gole, A ;
Sau, TK ;
Murphy, CJ .
ANALYTICAL CHEMISTRY, 2005, 77 (10) :3261-3266
[35]  
Palik E. D., 1991, Handbook of Optical Constants of Solids, V2nd
[36]   SERS as a bioassay platform: fundamentals, design, and applications [J].
Porter, Marc D. ;
Lipert, Robert J. ;
Siperko, Lorraine M. ;
Wang, Gufeng ;
Narayanana, Radha .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) :1001-1011
[37]   In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags [J].
Qian, Ximei ;
Peng, Xiang-Hong ;
Ansari, Dominic O. ;
Yin-Goen, Qiqin ;
Chen, Georgia Z. ;
Shin, Dong M. ;
Yang, Lily ;
Young, Andrew N. ;
Wang, May D. ;
Nie, Shuming .
NATURE BIOTECHNOLOGY, 2008, 26 (01) :83-90
[38]   Sculptured thin films and glancing angle deposition: Growth mechanics and applications [J].
Robbie, K ;
Brett, MJ .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1997, 15 (03) :1460-1465
[39]   Quantum Mechanical Description of Raman Scattering from Molecules in Plasmonic Cavities [J].
Schmidt, Mikolaj K. ;
Esteban, Ruben ;
Gonzalez-Tudela, Alejandro ;
Giedke, Geza ;
Aizpurua, Javier .
ACS NANO, 2016, 10 (06) :6291-6298
[40]   Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis [J].
Smith, W. E. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) :955-964