Real-time Raman detection by the cavity mode enhanced Raman scattering

被引:23
作者
Liu, Yang [1 ,2 ,3 ]
Tian, Xiaorui [4 ]
Guo, Weiran [1 ,2 ,3 ]
Wang, Wenqiang [1 ,2 ,3 ]
Guan, Zhiqiang [1 ,2 ,3 ]
Xu, Hongxing [1 ,2 ,3 ,5 ]
机构
[1] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[2] Wuhan Univ, Ctr Nanosci & Nanotechnol, Wuhan 430072, Hubei, Peoples R China
[3] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Hubei, Peoples R China
[4] Shandong Normal Univ, Coll Chem Chem Engn & Mat Sci, Jinan 250014, Shandong, Peoples R China
[5] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
surface enhanced Raman scattering; cavity modes; microfluidics; bi-analyte; real-time detection; SELF-ASSEMBLED MONOLAYERS; SINGLE-MOLECULE; SPECTROSCOPY; SERS; NANOPARTICLES; DEPENDENCE; DNA;
D O I
10.1007/s12274-019-2414-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Integrating surface enhanced Raman scattering with microfluidics is the long-term goal for reduced volume, multiplex and automation fingerprint detection of biomolecules. High sensitivity, repeatability, stability, reusability and real-time detection are the performance goals of Raman detection in the aqueous solution environment. Here, we reported the study on cavity mode enhanced SERS detection of both surface-adsorbed molecules and non-surface-adsorbed molecules in the solution environment. The cavity modes had important influence on the SERS enhancement, especially for the non-surface adsorbed molecules. Uniform, repeatable, reusable and real-time Raman signal detection of the non-surface adsorbed Rhodamine 6G molecules was demonstrated. Our work is an important step for the practical on-chip microfluidic Raman detection applications.
引用
收藏
页码:1643 / 1649
页数:7
相关论文
共 56 条
[1]   ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE [J].
ALBRECHT, MG ;
CREIGHTON, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :5215-5217
[2]   Excitations of surface plasmon polaritons in double layer metal grating structures [J].
Anttu, N. ;
Guan, Z. Q. ;
Hakanson, U. ;
Xu, H. X. ;
Xu, H. Q. .
APPLIED PHYSICS LETTERS, 2012, 100 (09)
[3]   Structural Effects in the Electromagnetic Enhancement Mechanism of Surface-Enhanced Raman Scattering: Dipole Reradiation and Rectangular Symmetry Effects for Nanoparticle Arrays [J].
Ausman, Logan K. ;
Li, Shuzhou ;
Schatz, George C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (33) :17318-17327
[4]   Optical constants of Cu, Ag, and Au revisited [J].
Babar, Shaista ;
Weaver, J. H. .
APPLIED OPTICS, 2015, 54 (03) :477-481
[5]   Bifunctional Au@Pt core-shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy [J].
Bao, Zhi Yong ;
Lei, Dang Yuan ;
Jiang, Ruibin ;
Liu, Xin ;
Dai, Jiyan ;
Wang, Jianfang ;
Chan, Helen L. W. ;
Tsang, Yuen Hong .
NANOSCALE, 2014, 6 (15) :9063-9070
[6]   Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals [J].
Baumberg, JJ ;
Kelf, TA ;
Sugawara, Y ;
Cintra, S ;
Abdelsalam, ME ;
Bartlett, PN ;
Russell, AE .
NANO LETTERS, 2005, 5 (11) :2262-2267
[7]   Probing the structure of single-molecule surface-enhanced Raman scattering hot spots [J].
Camden, Jon P. ;
Dieringer, Jon A. ;
Wang, Yingmin ;
Masiello, David J. ;
Marks, Lawrence D. ;
Schatz, George C. ;
Van Duyne, Richard P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (38) :12616-+
[8]   Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection [J].
Cao, YWC ;
Jin, RC ;
Mirkin, CA .
SCIENCE, 2002, 297 (5586) :1536-1540
[9]   Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips [J].
Chen, Lingxin ;
Choo, Jaebum .
ELECTROPHORESIS, 2008, 29 (09) :1815-1828
[10]   Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe [J].
Chen, Wen ;
Zhang, Shunping ;
Kang, Meng ;
Liu, Weikang ;
Ou, Zhenwei ;
Li, Yang ;
Zhang, Yexin ;
Guan, Zhiqiang ;
Xu, Hongxing .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7