Spin and statistics on the Groenewold-Moyal plane: Pauli-forbidden levels and transitions

被引:125
作者
Balachandran, A. P. [1 ]
Mangano, G.
Pinzul, A.
Vaidya, S.
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
[3] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[4] Indian Inst Sci, Ctr High Energy Phys, Bangalore 560012, Karnataka, India
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2006年 / 21卷 / 15期
基金
美国国家科学基金会;
关键词
Moyal plane; noncommutative field theories; spin and statistics;
D O I
10.1142/S0217751X06031764
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The Groenewold-Moyal plane is the algebra A(0)(Rd+1) of functions on Rd+1 with the *-product as the multiplication law, and the commutator (x(mu), x(v)) = i theta(mu v) (mu,v = 0, 1,..., d) between the coordinate functions. Chaichian et al.(1) and Aschieri et al.(2) have proved that the Poincare group acts as automorphisms on A(theta)(Rd+1) if the coproduct is deformed. (See also the prior work of Majid,(3) Oeckl(4) and Grosse et al.(5)) In fact; the diffeomorphism group with a deformed coproduct also does so according to the results of Ref. 2. In this paper we show that for this new action, the Bose and Fermi commutation relations are deformed as well. Their potential applications to the quantum Hall effect are pointed out. Very striking consequences of these deformations are the occurrence of Pauli-forbidden energy levels and transitions. Such new effects are discussed in simple cases.
引用
收藏
页码:3111 / 3126
页数:16
相关论文
共 23 条
  • [1] General properties of non-commutative field theories
    Alvarez-Gaumé, L
    Vázquez-Mozo, MA
    [J]. NUCLEAR PHYSICS B, 2003, 668 (1-2) : 293 - 321
  • [2] A gravity theory on noncommultative spaces
    Aschieri, P
    Blohmann, C
    Dimitrijevi, M
    Meyer, F
    Schupp, P
    Wess, J
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) : 3511 - 3532
  • [3] New experimental limits on violations of the Pauli exclusion principle obtained with the Borexino Counting Test Facility
    Back, HO
    Balata, M
    de Bari, A
    de Bellefon, A
    Bellini, G
    Benziger, J
    Bonetti, S
    Buck, C
    Caccianiga, B
    Cadonati, L
    Calaprice, F
    Cecchet, G
    Chen, M
    Di Credico, A
    Dadoun, O
    D'Angelo, D
    Derbin, A
    Deutsch, M
    Etenko, A
    von Feilitzsch, F
    Fernholz, R
    Ford, R
    Franco, D
    Freudiger, B
    Galbiati, C
    Gazzana, S
    Giammarchi, MG
    Goeger-Neff, M
    Goretti, A
    Grieb, C
    Hampel, W
    Harding, E
    Hartmann, FX
    Heusser, G
    Ianni, A
    Ianni, AM
    de Kerret, H
    Kiko, J
    Kirsten, T
    Kobychev, VV
    Korga, G
    Korschinek, G
    Kozlov, Y
    Kryn, D
    Laubenstein, M
    Lendvai, C
    Leung, M
    Litvinovich, E
    Lombardi, P
    Machulin, I
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2004, 37 (04): : 421 - 431
  • [4] BALACHANDRAN AP, 2006, UNPUB, V634, P434
  • [5] BALACHANDRAN AP, 1984, LECT GROUP THEORY PH
  • [6] Birman J S., 1974, BRAIDS LINKS MAPPING, V82
  • [7] On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT
    Chaichian, M
    Kulish, PP
    Nishijima, K
    Tureanu, A
    [J]. PHYSICS LETTERS B, 2004, 604 (1-2) : 98 - 102
  • [8] DIMITRIJEVIC M, HEPTH0411224
  • [9] Drinfeld V.G., 1990, Leningrad Math. J., V1, P1419
  • [10] Deforming maps for Lie group covariant creation and annihilation operators
    Fiore, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) : 3437 - 3452