Fracture and toughening mechanisms of GNP-based nanocomposites in modes I and II fracture

被引:51
作者
Ahmadi-Moghadam, B. [1 ]
Taheri, F. [1 ]
机构
[1] Dalhousie Univ, Dept Civil & Resource Engn, Adv Composites & Mech Res Lab, Halifax, NS B3H 4R2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Fracture toughness; Process zone; Fracture mechanism; Fractography; Electron microscopy; CRACK DEFLECTION PROCESSES; EPOXY NANOCOMPOSITES; CARBON NANOTUBES; COMPOSITES; NANOPLATELETS; SYNERGY; FILLER;
D O I
10.1016/j.engfracmech.2014.08.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The objective of this study was to enhance the fracture response and toughness of epoxy resins in a cost-effective manner. Therefore, an experimental program was designed to examine the fracture response and toughness (both modes I and II fracture) of an epoxy resin reinforced with different concentrations of graphene-nanoplatelets and multi-wall carbon-nanotube. The resulting nanocomposites exhibited significant improvement in their mode-I fracture toughness, while their mode-II fracture toughness was slightly degraded. Scanning-electron and atomic-force microscopes produced micrographs revealed the alteration of the fracture and toughening mechanisms of the resin by evidence such as relatively larger plastic deformation, crack deflection, bridging and pinning in mode-I fracture. An empirical fracture mechanism criterion was also proposed. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:329 / 339
页数:11
相关论文
共 20 条
[1]   A review of vapor grown carbon nanofiber/polymer conductive composites [J].
Al-Saleh, Mohammed H. ;
Sundararaj, Uttandaraman .
CARBON, 2009, 47 (01) :2-22
[2]  
[Anonymous], 2005, FRACTURE MECH FUNDAM
[3]   Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites [J].
Ayatollahi, M. R. ;
Shadlou, S. ;
Shokrieh, M. M. .
ENGINEERING FRACTURE MECHANICS, 2011, 78 (14) :2620-2632
[4]   Role of particle cavitation in rubber-toughened epoxies .1. Microvoid toughening [J].
Bagheri, R ;
Pearson, RA .
POLYMER, 1996, 37 (20) :4529-4538
[5]   The influence of silicate-based nano-filler on the fracture toughness of epoxy resin [J].
Brunner, A. J. ;
Necola, A. ;
Rees, M. ;
Gasser, Ph. ;
Kornmann, X. ;
Thomann, R. ;
Barbezat, M. .
ENGINEERING FRACTURE MECHANICS, 2006, 73 (16) :2336-2345
[6]   Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites [J].
Chatterjee, S. ;
Nafezarefi, F. ;
Tai, N. H. ;
Schlagenhauf, L. ;
Nueesch, F. A. ;
Chu, B. T. T. .
CARBON, 2012, 50 (15) :5380-5386
[7]   CRACK DEFLECTION PROCESSES .1. THEORY [J].
FABER, KT ;
EVANS, AG .
ACTA METALLURGICA, 1983, 31 (04) :565-576
[8]   CRACK DEFLECTION PROCESSES .2. EXPERIMENT [J].
FABER, KT ;
EVANS, AG .
ACTA METALLURGICA, 1983, 31 (04) :577-584
[9]   Polyethylene/Graphite Nanocomposites Obtained by In Situ Polymerization [J].
Fim, Fabiana de C. ;
Guterres, Jonathan M. ;
Basso, Nara R. S. ;
Galland, Griselda B. .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2010, 48 (03) :692-698
[10]   FRACTURE OF A BRITTLE PARTICULATE COMPOSITE .1. EXPERIMENTAL ASPECTS [J].
GREEN, DJ ;
NICHOLSON, PS ;
EMBURY, JD .
JOURNAL OF MATERIALS SCIENCE, 1979, 14 (06) :1413-1420