Background: Dopamine agonists (DAs), which can be categorized as ergot derived and non-ergot derived, are used in the treatment of Parkinson's disease. Objectives: This review describes the pharmacologic and pharmacokinetic properties of selected DAs and relates these characteristics to clinical outcomes, with an emphasis on adverse events. Methods: Relevant articles were identified through a search of MEDLINE (to May 2006) using the terms dopamine agonists (or each individual drug name) and pbarmacokinetics, metabolism, drug-drug interaction, interactions, CYP450, fibrosis, valvular heart disease, tremor, clinical trials, reviews, and meta-analyses. Abstracts from recent sessions of the International Congress of Parkinson's Disease and Movement Disorders were also examined. Clinical studies with < 20 patients overall or < 10 patients per treatment group in the final analysis were excluded. All DAs that were graded at least possibly useful with respect to at least 3 of 4 items connected to the treatment/prevention of motor symptoms/complications in the most recent evidence-based medical review update were included. This resulted in a focus on the ergot-derived DAs bromocriptine, cabergoline, and pergolide, and the non-ergot-derived DAs pramipexole and ropinirole. Results: Bromocriptine, cabergoline, pergolide, and ropinirole, but not pramipexole, have the potential for drug-drug interactions mediated by the cytochrome P450 (CYP) enzyme system. The occurrence of dyskinesia may be linked to stimulation of the dopamine D, receptor, for which cabergoline and pergolide have a similar and relatively high affinity; bromocriptine, pramipexole, and ropinirole have been associated with a lower risk of dyskinesias. The valvular heart disease (VHD) and pulmonary and retroperitoneal fibrosis seen with long-term use appear to represent a class effect of the ergot-derived DAs that may be related to stimulation of serotonin 5-HT2B (and possibly 5-HT2A) receptors. The incidence of valvular regurgitation was 31% to 47% with ergot-derived DAs, 10% with non-ergot-derived DAs, and 13% with controls. Conclusions: As reflected in the results of the clinical trials included in this review, dyskinesia associated with DA therapy may be linked to stimulation of the D-1 receptor. Fibrosis (including VHD) seemed to be a class effect of the ergot-derived DAs. Each of the DAs except pramipexole has the potential to interact with other drugs via the CYP enzyme system.