Spatial Logistic Regression for Support-Vector Classification of Hyperspectral Imagery

被引:21
作者
Liu, Wu [1 ]
Fowler, James E. [2 ]
Zhao, Chunhui [1 ]
机构
[1] Harbin Engn Univ, Sch Informat & Commun Engn, Harbin 150001, Peoples R China
[2] Mississippi State Univ, Dept Elect & Comp Engn, Geosyst Res Inst, Starkville, MS 39762 USA
关键词
Hyperspectral classification; logistic regression (LR); support-vector machine (SVM); PROBABILITIES;
D O I
10.1109/LGRS.2017.2648515
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The traditional use of support-vector machines for hyperspectral imagery exploits spectral information alone; however, classifiers that incorporate spatial context have witnessed increasing interest due to their potential for significant improvement over spectral-only approaches. A new paradigm for spatial-spectral support-vector classification is introduced in which spatial context is included into the logistic regression commonly used with support-vector classifiers to provide a probabilistic output. In experimental results, the proposed approach is compared to methods representative of two prominent families of spatial-spectral support-vector classifiers-composite kernels and postprocessing regularization-and it is observed that the proposed approach provides superior classification accuracy.
引用
收藏
页码:439 / 443
页数:5
相关论文
共 14 条
[1]   Composite kernels for hyperspectral image classification [J].
Camps-Valls, G ;
Gomez-Chova, L ;
Muñoz-Marí, J ;
Vila-Francés, J ;
Calpe-Maravilla, J .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) :93-97
[2]  
Gamba P, 2004, INT GEOSCI REMOTE SE, P69
[3]   Nonlinear Multiple Kernel Learning With Multiple-Structure-Element Extended Morphological Profiles for Hyperspectral Image Classification [J].
Gu, Yanfeng ;
Liu, Tianzhu ;
Jia, Xiuping ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06) :3235-3247
[4]   Support Tensor Machines for Classification of Hyperspectral Remote Sensing Imagery [J].
Guo, Xian ;
Huang, Xin ;
Zhang, Lefei ;
Zhang, Liangpei ;
Plaza, Antonio ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06) :3248-3264
[5]   Spectral-Spatial Constraint Hyperspectral Image Classification [J].
Ji, Rongrong ;
Gao, Yue ;
Hong, Richang ;
Liu, Qiong ;
Tao, Dacheng ;
Li, Xuelong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03) :1811-1824
[6]   Spectral-Spatial Classification of Hyperspectral Data Using Local and Global Probabilities for Mixed Pixel Characterization [J].
Khodadadzadeh, Mahdi ;
Li, Jun ;
Plaza, Antonio ;
Ghassemian, Hassan ;
Bioucas-Dias, Jose M. ;
Li, Xia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (10) :6298-6314
[7]   A Spatial-Contextual Support Vector Machine for Remotely Sensed Image Classification [J].
Li, Cheng-Hsuan ;
Kuo, Bor-Chen ;
Lin, Chin-Teng ;
Huang, Chih-Sheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (03) :784-799
[8]   Decision Fusion in Kernel-Induced Spaces for Hyperspectral Image Classification [J].
Li, Wei ;
Prasad, Saurabh ;
Fowler, James E. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (06) :3399-3411
[9]   Classification of hyperspectral remote sensing images with support vector machines [J].
Melgani, F ;
Bruzzone, L .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08) :1778-1790
[10]  
Menon V, 2015, IEEE IMAGE PROC, P2100, DOI 10.1109/ICIP.2015.7351171