Additive manufacturing of green composites: Poly (lactic acid) reinforced with keratin materials obtained from Angora rabbit hair

被引:9
作者
Flores-Hernandez, Cynthia Graciela [1 ]
Velasco-Santos, Carlos [1 ]
Rivera-Armenta, Jose Luis [2 ]
Gomez-Guzman, Oscar [1 ]
Yanez-Limon, Jose Martin [3 ]
Olivas-Armendariz, Imelda [4 ]
Lopez-Barroso, Juventino [1 ]
Martinez-Hernandez, Ana Laura [1 ]
机构
[1] Tecnol Nacl Mexico, Div Estudios Posgrad & Invest, Av Tecnol S-N Esq Gral Mariano Escobedo, Queretaro 76000, Mexico
[2] Tecnol Nacl Mexico, Ctr Invest Petroquim, Campus Ciudad Madero, Altamira, Tamaulipas, Mexico
[3] Cinvestav Queretaro, Libramiento Norponiente 2000, Fraccionamiento Real De, Queretaro, Mexico
[4] Univ Autonoma Cd Juarez, Inst Ingn & Tecnol, Juarez, Chihuahua, Mexico
关键词
biopolymers and renewable polymers; composites; microscopy; manufacturing; thermal properties; MECHANICAL-PROPERTIES; THERMAL-PROPERTIES; FIBERS; MORPHOLOGY; BEHAVIOR; WOOL; FILM; DSC;
D O I
10.1002/app.50321
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this research, additive manufacturing of polylactic acid (PLA) reinforced with keratin was studied. Keratin was obtained from Angora rabbit hair and modified with NaOH. Scanning electron microscopy (SEM) images showed that the modified surfaces were rougher than untreated surfaces. Furthermore, SEM images in the composites' fracture regions showed surface changes, associated with the nature of the reinforcement. Likewise, thermomechanical properties of the composites were attributed to the nature of the reinforcement and the type of keratin. Besides, the 3D printed composites showed higher thermal conductivity values than PLA with the addition of keratin. Cytotoxicity tests revealed an improvement in cell growth compared to the control and PLA. These results are meaningful toward the development of high thermal conductors and biocompatible composites with applications in different fields, where the use of only natural polymers is necessary.
引用
收藏
页数:13
相关论文
共 66 条
[1]  
Abselwahab M. A., 2012, POLYM DEGRAD STABIL, V97, P1822, DOI [10.1016/j.polymdegradstab.2012.05.036, DOI 10.1016/J.POLYMDEGRADSTAB.2012.05.036]
[2]   Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid [J].
Anderson, Isabelle .
3D PRINTING AND ADDITIVE MANUFACTURING, 2017, 4 (02) :110-115
[3]  
[Anonymous], 2015, KEY ENG MAT
[4]  
[Anonymous], 2009, FUNDAMENTALS TISSUE, DOI DOI 10.1007/978-3-540-77755-7
[5]   Fatigue behavior of PLA-wood composite manufactured by fused filament fabrication [J].
Antonio Travieso-Rodriguez, J. ;
Zandi, Mohammad D. ;
Jerez-Mesa, Ramon ;
Lluma-Fuentes, Jordi .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (04) :8507-8516
[6]   Material properties and cell compatibility of poly(γ-glutamic acid)-keratin hydrogels [J].
Bajestani, Maryam Ijadi ;
Kader, Safaa ;
Monavarian, Mehri ;
Mousavi, Seyyed Mohammad ;
Jabbari, Esmaiel ;
Jafari, Arezou .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 142 (142) :790-802
[7]   Thermal insulation using biodegradable poly(lactic acid)/date pit composites [J].
Barkhad, Mohamed Saeed ;
Abu-Jdayil, Basim ;
Iqbal, Muhammad Z. ;
Mourad, Abdel-Hamid, I .
CONSTRUCTION AND BUILDING MATERIALS, 2020, 261 (261)
[8]  
Bergman T.L., 2007, Fundamentals of Heat and Mass Transfer
[9]   Depression of the melting temperature by moisture for α-form crystallites in human hair keratin [J].
Cao, JN ;
Leroy, F .
BIOPOLYMERS, 2005, 77 (01) :38-43
[10]   DSC study of biodegradable poly(lactic acid) and poly(hydroxy ester ether) blends [J].
Cao, X ;
Mohamed, A ;
Gordon, SH ;
Willett, JL ;
Sessa, DJ .
THERMOCHIMICA ACTA, 2003, 406 (1-2) :115-127