Type II Blow-up in the 5-dimensional Energy Critical Heat Equation

被引:31
作者
del Pino, Manuel [1 ,2 ]
Musso, Monica [1 ,3 ]
Wei, Jun Cheng [4 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Univ Chile, Dept Ingn Matemat CMM, Santiago 8370456, Chile
[3] Univ Catolica Chile, Dept Matemat, Macul 7820436, Chile
[4] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Singularity formation; bubbling phenomena; critical parabolic equations;
D O I
10.1007/s10114-019-8341-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the energy critical heat equation in dimension n = 5. More precisely we find that for given points q(1),q(2),...,q(k) and any sufficiently small T > 0 there is an initial condition u(0) such that the solution u(x,t) of (0.1) blows-up at exactly those k points with rates type II, namely with absolute size T-t)(-) for . The blow-up profile around each point is of bubbling type, in the form of sharply scaled Aubin-Talenti bubbles.
引用
收藏
页码:1027 / 1042
页数:16
相关论文
共 24 条
[1]  
Collot C., ARXIV160507337
[2]  
Collot C., ARXIV170904941
[3]   NONRADIAL TYPE II BLOW UP FOR THE ENERGY-SUPERCRITICAL SEMILINEAR HEAT EQUATION [J].
Collot, Charles .
ANALYSIS & PDE, 2017, 10 (01) :127-252
[4]  
Cortazar C., J EUR MATH SOC
[5]   Type II ancient compact solutions to the Yamabe flow [J].
Daskalopoulos, Panagiota ;
del Pino, Manuel ;
Sesum, Natasa .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 738 :1-71
[6]  
Davila J., ARXIV170205801
[7]   Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation [J].
Duyckaerts, Thomas ;
Kenig, Carlos ;
Merle, Frank .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (03) :533-599
[8]   Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity [J].
Filippas, S ;
Herrero, MA ;
Velázquez, JJL .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2004) :2957-2982
[9]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[10]   Blow up rate for semilinear heat equations with subcritical nonlinearity [J].
Giga, Y ;
Matsui, SY ;
Sasayama, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (02) :483-514