Integrated energy performance optimization of a passively designed high-rise residential building in different climatic zones of China

被引:75
作者
Chen, Xi [1 ]
Yang, Hongxing [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg Serv Engn, Renewable Energy Res Grp RERG, Kowloon, Hong Kong, Peoples R China
关键词
Surrogate model; Weather conditions; Passive design; Sensitivity analysis; Optimization; ADAPTIVE THERMAL COMFORT; RENTAL HOUSING DEVELOPMENT; SIMULATION-BASED APPROACH; MULTIOBJECTIVE OPTIMIZATION; GENETIC ALGORITHM; MODELS; SYSTEM; HOT; SENSITIVITY; IMPACT;
D O I
10.1016/j.apenergy.2018.01.099
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper mainly focuses on investigating the influence of weather conditions on the sensitivity analysis and optimization of a typical passively designed high-rise residential building. A holistic passive design approach combining a variance-based factor prioritizing and surrogate model based multi-objective optimization was previously proposed to explore the green building solution in the hot and humid climate of Hong Kong. The design approach is further extended for application into a broader spectrum of climates across the mainland of China, including the severe cold zone, cold zone, hot summer cold winter zone, temperate zone as well as hot summer warm winter zone, The relative weight analysis is first compared with the Fourier Amplitude Transformation Analysis (FAST) in prioritizing the weighting of design inputs for different climatic zones. The relative weight analysis is then proved a feasible alternative sensitivity analysis method when its corresponding multiple linear regression (MLR) model can achieve good prediction performance. Furthermore, a tuning program in R is developed to improve the prediction performance of surrogate models with the Support Vector Machine (SVM) algorithm under above climatic zones. The model fitting performance with SVM is proved to be greatly improved by modifying the Sigma and C parameters. Finally, optimum design options under the five climatic zones are discussed in relation to the outdoor thermal, ventilation and solar radiation conditions. This research explored the applicability of the proposed passive design optimization approach in diverse climates, and can therefore prompt decision-makers' endorsement as a national green building design tool in the early planning stage.
引用
收藏
页码:145 / 158
页数:14
相关论文
共 56 条
[1]  
[Anonymous], 8 WINDS C COUNT COST
[2]  
[Anonymous], 1993, An introduction to the bootstrap
[3]  
[Anonymous], 2013, ENERGYPLUS ENG REF R
[4]  
[Anonymous], J STAT SOFTW
[5]  
[Anonymous], SUPPORT VECTOR MACHI
[6]  
[Anonymous], THERMAL COMFORT ANAL
[7]  
[Anonymous], 2012, BEAM PLUS ASS FLOW C
[8]  
[Anonymous], POP TYP HOUS
[9]  
[Anonymous], 2004, ASHRAE 55-2004, Thermal environmental conditions for human occupancy
[10]  
[Anonymous], 2009, ASHRAE Handbook|Fundamentals