ON A PERTURBATION BOUND FOR INVARIANT SUBSPACES OF MATRICES

被引:15
|
作者
Karow, Michael [1 ]
Kressner, Daniel [2 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Ecole Polytech Fed Lausanne, MATHICSE, CH-1015 Lausanne, Switzerland
关键词
invariant subspaces; perturbation theory; pseudospectra; quadratic matrix equation; STABLE EIGENDECOMPOSITIONS; SEPARATION; ERROR;
D O I
10.1137/130912372
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a nonsymmetric matrix A, we investigate the effect of perturbations on an invariant subspace of A. The result derived in this paper differs from Stewart's classical result and sometimes yields tighter bounds. Moreover, we provide norm estimates for the remainder terms in well-known perturbation expansions for invariant subspaces, eigenvectors, and eigenvalues.
引用
收藏
页码:599 / 618
页数:20
相关论文
共 50 条
  • [1] Stability of Invariant Subspaces of Quaternion Matrices
    Rodman, Leiba
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (05) : 1069 - 1119
  • [2] On rank one matrices and invariant subspaces
    Osnaga, Silvia Monica
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2005, 10 (01): : 145 - 148
  • [3] COMPUTATION OF STABLE INVARIANT SUBSPACES OF HAMILTONIAN MATRICES
    PATEL, RV
    LIN, Z
    MISRA, P
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (01) : 284 - 298
  • [4] Convergence of restarted Krylov subspaces to invariant subspaces
    Beattie, C
    Embree, M
    Rossi, J
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 25 (04) : 1074 - 1109
  • [5] Probabilistic Perturbation Bounds for Invariant, Deflating and Singular Subspaces
    Petkov, Petko H.
    AXIOMS, 2024, 13 (09)
  • [6] Quasiaffinity and invariant subspaces
    A. Mello
    C. S. Kubrusly
    Archiv der Mathematik, 2016, 107 : 173 - 184
  • [7] Quasiaffinity and invariant subspaces
    Mello, A.
    Kubrusly, C. S.
    ARCHIV DER MATHEMATIK, 2016, 107 (02) : 173 - 184
  • [8] Approximation by group invariant subspaces
    Barbieri, Davide
    Cabrelli, Carlos
    Hernandez, Eugenio
    Molter, Ursula
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 76 - 100
  • [9] CHARACTERIZATION OF INVARIANT SUBSPACES IN THE POLYDISC
    Maji, Amit
    Mundayadan, Aneesh
    Sarkar, Jaydeb
    Sankar, T. R.
    JOURNAL OF OPERATOR THEORY, 2019, 82 (02) : 445 - 468
  • [10] Polycyclic codes as invariant subspaces
    Shi, Minjia
    Li, Xiaoxiao
    Sepasdar, Zahra
    Sole, Patrick
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 68