A Comparison of Real-Time Thermal Rating Systems in the U.S. and the U.K.

被引:73
作者
Greenwood, David M. [1 ]
Gentle, Jake P. [2 ]
Myers, Kurt S. [2 ]
Davison, Peter J. [1 ]
West, Isaac J. [2 ]
Bush, Jason W. [2 ]
Ingram, Grant L. [3 ]
Troffaes, Matthias C. M. [4 ]
机构
[1] Newcastle Univ, Sch Elect & Elect Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Idaho Natl Lab, Idaho Falls, ID 83415 USA
[3] Univ Durham, Sch Engn & Comp Sci, Durham DH1 3LE, England
[4] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Fluid dynamics; power system planning; power transmission;
D O I
10.1109/TPWRD.2014.2299068
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Real-time thermal rating is a smart-grid technology that allows the rating of electrical conductors to be increased based on local weather conditions. Overhead lines are conventionally given a conservative, constant seasonal rating based on seasonal and regional worst case scenarios rather than actual, say, local hourly weather predictions. This paper provides a report of two pioneering schemes-one in the U.S. and one in the U.K.-where real-time thermal ratings have been applied. Thereby, we demonstrate that observing the local weather conditions in real time leads to additional capacity and safer operation. Second, we critically compare both approaches and discuss their limitations. In doing so, we arrive at novel insights which will inform and improve future real-time thermal rating projects.
引用
收藏
页码:1849 / 1858
页数:10
相关论文
共 23 条
[1]  
[Anonymous], 2012, B236 CIGRE WORK GROU
[2]  
[Anonymous], 1993, 738 IEEE
[3]  
[Anonymous], 1992, ELECTRA, V114, P107
[4]  
CIGRE Working Group B2.12, 2006, B212 CIGRE WORK GROU
[5]  
CIGRE Working Group B2/C1.19, 2010, B2C119 CIGRE WORK GR
[6]   Computer simulation of atmospheric flows over real forests for wind energy resource evaluation [J].
da Costa, J. C. Lopes ;
Castro, F. A. ;
Palma, J. M. L. M. ;
Stuart, P. .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2006, 94 (08) :603-620
[7]   CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture [J].
Endalew, A. Melese ;
Hertog, M. ;
Delele, M. A. ;
Baetens, K. ;
Persoons, T. ;
Baelmans, M. ;
Ramon, H. ;
Nicolai, B. M. ;
Verboven, P. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2009, 30 (02) :356-368
[8]  
Energy Networks Association, 1986, ENG REC P27 CURR RAT
[9]  
Gentle J. P., 2012, W EN POL RES C BOIS
[10]  
Greenwood D. M., 2011, 10 WIND INT WORKSH A