Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers

被引:17
|
作者
Green, P. L. [1 ,3 ]
Maskell, S. [2 ,3 ]
机构
[1] Univ Liverpool, Sch Engn, Liverpool L69 7ZF, Merseyside, England
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 7ZF, Merseyside, England
[3] Univ Liverpool, Inst Risk & Uncertainty, Liverpool L69 7ZF, Merseyside, England
关键词
Big Data; Parameter estimation; Model updating; System identification; Sequential Monte Carlo sampler; TRAINING DATA; IDENTIFICATION; MODELS;
D O I
10.1016/j.ymssp.2016.12.023
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper the authors present a method which facilitates computationally efficient parameter estimation of dynamical systems from a continuously growing set of measurement data. It is shown that the proposed method, which utilises Sequential Monte Carlo samplers, is guaranteed to be fully parallelisable (in contrast to Markov chain Monte Carlo methods) and can be applied to a wide variety of scenarios within structural dynamics. Its ability to allow convergence of one's parameter estimates, as more data is analysed, sets it apart from other sequential methods (such as the particle filter). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:379 / 396
页数:18
相关论文
共 50 条
  • [41] Data-driven discovery of linear dynamical systems from noisy data
    Wang, Yasen
    Yuan, Ye
    Fang, Huazhen
    Ding, Han
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (01) : 121 - 129
  • [42] A Monte Carlo method for comparing generalized estimating equations to conventional statistical techniques for discounting data
    Friedel, Jonathan E.
    DeHart, William B.
    Foreman, Anne M.
    Andrew, Michael E.
    JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR, 2019, 111 (02) : 207 - 224
  • [43] Estimating the Flashover Probability of Residential Fires Using Monte Carlo Simulations of the MQH Correlation
    Bruns, Morgan C.
    FIRE TECHNOLOGY, 2018, 54 (01) : 187 - 210
  • [44] Uncertainty Quantification via Bayesian Inference Using Sequential Monte Carlo Methods for CO2 Adsorption Process
    Kalyanaraman, Jayashree
    Kawajiri, Yoshiaki
    Lively, Ryan P.
    Realff, Matthew J.
    AICHE JOURNAL, 2016, 62 (09) : 3352 - 3368
  • [45] Identifiability of Linear and Linear-in-Parameters Dynamical Systems from a Single Trajectory
    Stanhope, S.
    Rubin, J. E.
    Swigon, D.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (04): : 1792 - 1815
  • [46] On a simple scheme for systems modeling and identification using big data techniques
    Glavind, Sebastian T.
    Sepulveda, Juan G.
    Faber, Michael H.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 220
  • [47] TARGET ESTIMATION IN REAL-TIME POLYMERASE CHAIN REACTION USING SEQUENTIAL MONTE CARLO
    Miduthuri, Arun
    Wu, Ting
    Vikalo, Haris
    2009 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2009), 2009, : 176 - 179
  • [48] Estimating the Constant Elasticity of Variance Model with Data-Driven Markov Chain Monte Carlo Methods
    Xiao, Shuang
    Li, Guo
    Jia, Yunjing
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2017, 34 (01)
  • [49] A Bayesian Inference Method Using Monte Carlo Sampling for Estimating the Number of Communities in Bipartite Networks
    Wang, Guo-Zheng
    Xiong, Li
    Liu, Hu-Chen
    SCIENTIFIC PROGRAMMING, 2019, 2019
  • [50] Monte Carlo estimation of stage structured development from cohort data
    Knape, Jonas
    de Valpine, Perry
    ECOLOGY, 2016, 97 (04) : 992 - 1002