Big Data;
Parameter estimation;
Model updating;
System identification;
Sequential Monte Carlo sampler;
TRAINING DATA;
IDENTIFICATION;
MODELS;
D O I:
10.1016/j.ymssp.2016.12.023
中图分类号:
TH [机械、仪表工业];
学科分类号:
0802 ;
摘要:
In this paper the authors present a method which facilitates computationally efficient parameter estimation of dynamical systems from a continuously growing set of measurement data. It is shown that the proposed method, which utilises Sequential Monte Carlo samplers, is guaranteed to be fully parallelisable (in contrast to Markov chain Monte Carlo methods) and can be applied to a wide variety of scenarios within structural dynamics. Its ability to allow convergence of one's parameter estimates, as more data is analysed, sets it apart from other sequential methods (such as the particle filter). (C) 2016 Elsevier Ltd. All rights reserved.
机构:
Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USAGeorgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
Huang, Renke
Zheng, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Georgia Inst Technol, Sch Elect & Comp Engn, Savannah, GA 31407 USAGeorgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
Zheng, Hao
Kuruoglu, Ercan E.
论文数: 0引用数: 0
h-index: 0
机构:
A Faedo Italian Natl Council Res ISTI CNR, Inst Sci & Technol Informat, Images & Signals Lab, I-56124 Pisa, ItalyGeorgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
机构:
Russian Acad Sci, Siberian Branch, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
Novosibirsk State Univ, Novosibirsk 630090, RussiaRussian Acad Sci, Siberian Branch, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
Mikhailov, G. A.
Lotova, G. Z.
论文数: 0引用数: 0
h-index: 0
机构:
Russian Acad Sci, Siberian Branch, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia
Novosibirsk State Univ, Novosibirsk 630090, RussiaRussian Acad Sci, Siberian Branch, Inst Computat Math & Math Geophys, Novosibirsk 630090, Russia