Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers

被引:17
|
作者
Green, P. L. [1 ,3 ]
Maskell, S. [2 ,3 ]
机构
[1] Univ Liverpool, Sch Engn, Liverpool L69 7ZF, Merseyside, England
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 7ZF, Merseyside, England
[3] Univ Liverpool, Inst Risk & Uncertainty, Liverpool L69 7ZF, Merseyside, England
关键词
Big Data; Parameter estimation; Model updating; System identification; Sequential Monte Carlo sampler; TRAINING DATA; IDENTIFICATION; MODELS;
D O I
10.1016/j.ymssp.2016.12.023
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper the authors present a method which facilitates computationally efficient parameter estimation of dynamical systems from a continuously growing set of measurement data. It is shown that the proposed method, which utilises Sequential Monte Carlo samplers, is guaranteed to be fully parallelisable (in contrast to Markov chain Monte Carlo methods) and can be applied to a wide variety of scenarios within structural dynamics. Its ability to allow convergence of one's parameter estimates, as more data is analysed, sets it apart from other sequential methods (such as the particle filter). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:379 / 396
页数:18
相关论文
共 50 条
  • [21] Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data
    Drovandi, Christopher C.
    McGree, James M.
    Pettitt, Anthony N.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 57 (01) : 320 - 335
  • [22] Estimating parameters of a packed bed by least squares and Markov Chain Monte Carlo
    Emery, A. F.
    Valenti, E.
    PROCEEDINGS OF THE ASME HEAT TRANSFER DIVISION 2005, VOL 2, 2005, 376-2 : 643 - 650
  • [23] Estimation and statistical analysis of model parameters using sequential Monte Carlo for phenol and p-cresol separation
    Yuan, Ziting
    Yamamoto, Yota
    Yajima, Tomoyuki
    Kawajiri, Yoshiaki
    JOURNAL OF CHROMATOGRAPHY A, 2023, 1688
  • [24] Transmission congestion evaluation of power systems using non-sequential Monte Carlo simulation technique
    Gan, Ming
    Xie, Kaigui
    Li, Chunyan
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2015, 25 (04): : 636 - 647
  • [25] Markov Chain Monte Carlo for Continuous-Time Switching Dynamical Systems
    Kohs, Lukas
    Alt, Bastian
    Koeppl, Heinz
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [26] On optimality of kernels for approximate Bayesian computation using sequential Monte Carlo
    Filippi, Sarah
    Barnes, Chris P.
    Cornebise, Julien
    Stumpf, Michael P. H.
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2013, 12 (01) : 87 - 107
  • [27] High-Dimensional Filtering Using Nested Sequential Monte Carlo
    Naesseth, Christian A.
    Lindsten, Fredrik
    Schon, Thomas B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (16) : 4177 - 4188
  • [28] Estimating Vehicle Fuel Consumption and Emissions Using GPS Big Data
    Kan, Zihan
    Tang, Luliang
    Kwan, Mei-Po
    Zhang, Xia
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2018, 15 (04):
  • [29] Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems
    Andrei Kramer
    Ben Calderhead
    Nicole Radde
    BMC Bioinformatics, 15
  • [30] Sequential preventive maintenance interval determination based on Monte Carlo method for deteriorating systems
    Zhu, Yukui
    Guo, Linhan
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON RELIABILITY SYSTEMS ENGINEERING (ICRSE 2017), 2017,