Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers

被引:17
|
作者
Green, P. L. [1 ,3 ]
Maskell, S. [2 ,3 ]
机构
[1] Univ Liverpool, Sch Engn, Liverpool L69 7ZF, Merseyside, England
[2] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 7ZF, Merseyside, England
[3] Univ Liverpool, Inst Risk & Uncertainty, Liverpool L69 7ZF, Merseyside, England
关键词
Big Data; Parameter estimation; Model updating; System identification; Sequential Monte Carlo sampler; TRAINING DATA; IDENTIFICATION; MODELS;
D O I
10.1016/j.ymssp.2016.12.023
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper the authors present a method which facilitates computationally efficient parameter estimation of dynamical systems from a continuously growing set of measurement data. It is shown that the proposed method, which utilises Sequential Monte Carlo samplers, is guaranteed to be fully parallelisable (in contrast to Markov chain Monte Carlo methods) and can be applied to a wide variety of scenarios within structural dynamics. Its ability to allow convergence of one's parameter estimates, as more data is analysed, sets it apart from other sequential methods (such as the particle filter). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:379 / 396
页数:18
相关论文
共 50 条
  • [1] Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
    Schon, Thomas B.
    Svensson, Andreas
    Murray, Lawrence
    Lindsten, Fredrik
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 : 866 - 883
  • [2] An Invitation to Sequential Monte Carlo Samplers
    Dai, Chenguang
    Heng, Jeremy
    Jacob, Pierre E.
    Whiteley, Nick
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1587 - 1600
  • [3] Density-Tempered Marginalized Sequential Monte Carlo Samplers
    Duan, Jin-Chuan
    Fulop, Andras
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2015, 33 (02) : 192 - 202
  • [4] Efficient Sequential Monte-Carlo Samplers for Bayesian Inference
    Thi Le Thu Nguyen
    Septier, Franois
    Peters, Gareth W.
    Delignon, Yves
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (05) : 1305 - 1319
  • [5] Sequential Monte Carlo samplers to fit and compare insurance loss models
    Goffard, Pierre-O
    SCANDINAVIAN ACTUARIAL JOURNAL, 2023, 2023 (08) : 765 - 787
  • [6] ESTIMATING BOLTZMANN AVERAGES FOR PROTEIN STRUCTURAL QUANTITIES USING SEQUENTIAL MONTE CARLO
    Hou, Zhaoran
    Wong, Samuel W. K.
    STATISTICA SINICA, 2024, 34 : 1263 - 1280
  • [7] Data Assimilation Using Sequential Monte Carlo Methods in Wildfire Spread Simulation
    Xue, Haidong
    Gu, Feng
    Hu, Xiaolin
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2012, 22 (04):
  • [8] Bayes and big data: the consensus Monte Carlo algorithm
    Scott, Steven L.
    Blocker, Alexander W.
    Bonassi, Fernando V.
    Chipman, Hugh A.
    George, Edward I.
    McCulloch, Robert E.
    INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE AND ENGINEERING MANAGEMENT, 2016, 11 (02) : 78 - 88
  • [9] Estimating model parameters from noisy observations for nonlinear dynamical systems
    Yeung, Lam Fat
    Zhan, Choujun
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2012, 20 (06) : 785 - 797
  • [10] Using Quantum Monte Carlo Simulation to Price Complicated Derivatives in the Big Data Environment
    Chen, Gen
    Wang, Lin
    PROCEEDINGS OF THE 4TH EUROPEAN SYMPOSIUM ON SOFTWARE ENGINEERING, ESSE 2023, 2024, : 70 - 74