Factorization of quantum charge transport for noninteracting fermions

被引:32
作者
Abanov, Alexander G. [1 ]
Ivanov, D. A. [2 ]
机构
[1] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[2] Ecole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 20期
基金
美国国家科学基金会;
关键词
electron transport theory; fermion systems; quantum theory; S-matrix theory; SHOT-NOISE; COHERENT STATES; STATISTICS; FLUCTUATIONS; CONDUCTORS;
D O I
10.1103/PhysRevB.79.205315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that the statistics of the charge transfer of noninteracting fermions through a two-lead contact is generalized binomial at any temperature and for any form of the scattering matrix: an arbitrary charge-transfer process can be decomposed into independent single-particle events. This result generalizes previous studies of adiabatic pumping at zero temperature and of transport induced by bias voltage.
引用
收藏
页数:9
相关论文
共 29 条
[1]  
Abanov A., UNPUB
[2]   Allowed charge transfers between coherent conductors driven by a time-dependent scatterer [J].
Abanov, A. G. ;
Ivanov, D. A. .
PHYSICAL REVIEW LETTERS, 2008, 100 (08)
[3]   Full counting statistics of a charge pump in the Coulomb blockade regime [J].
Andreev, AV ;
Mishchenko, EG .
PHYSICAL REVIEW B, 2001, 64 (23)
[4]  
[Anonymous], 2003, Quantum Noise in Mesoscopic Systems
[5]   Fredholm determinants and the statistics of charge transport [J].
Avron, J. E. ;
Bachmann, S. ;
Graf, G. M. ;
Klich, I. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 280 (03) :807-829
[6]  
Bakhturin Y. A., 2002, ENCY MATH
[7]   Shot noise in mesoscopic conductors [J].
Blanter, YM ;
Büttiker, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 336 (1-2) :1-166
[8]   Scattering approach to parametric pumping [J].
Brouwer, PW .
PHYSICAL REVIEW B, 1998, 58 (16) :10135-10138
[9]   SCATTERING-THEORY OF CURRENT AND INTENSITY NOISE CORRELATIONS IN CONDUCTORS AND WAVE GUIDES [J].
BUTTIKER, M .
PHYSICAL REVIEW B, 1992, 46 (19) :12485-12507
[10]   Wave-packet formalism of full counting statistics [J].
Hassler, F. ;
Suslov, M. V. ;
Graf, G. M. ;
Lebedev, M. V. ;
Lesovik, G. B. ;
Blatter, G. .
PHYSICAL REVIEW B, 2008, 78 (16)