A Variety of New Explicit Analytical Soliton Solutions of q-Deformed Sinh-Gordon in (2+1) Dimensions

被引:13
作者
Alrebdi, Haifa I. [1 ]
Raza, Nauman [2 ]
Arshed, Saima [2 ]
Butt, Asma Rashid [3 ]
Abdel-Aty, Abdel-Haleem [4 ,5 ]
Cesarano, Clemente [6 ]
Eleuch, Hichem [7 ,8 ,9 ]
机构
[1] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Phys, POB 84428, Riyadh 11671, Saudi Arabia
[2] Univ Punjab, Dept Math, Quaid Eazam e Campus, Lahore 54590, Pakistan
[3] Univ Engn & Technol, Dept Math, Lahore 54890, Pakistan
[4] Univ Bisha, Coll Sci, Dept Phys, POB 344, Bisha 61922, Saudi Arabia
[5] Al Azhar Univ, Fac Sci, Phys Dept, Assiut 71524, Egypt
[6] Int Telematic Univ Uninettuno, Sect Math, Corso Vittorio Emanuele II, I-00186 Rome, Italy
[7] Univ Sharjah, Dept Appl Phys & Astron, Sharjah 27272, U Arab Emirates
[8] Abu Dhabi Univ, Coll Arts & Sci, Abu Dhabi 59911, U Arab Emirates
[9] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 11期
关键词
soliton; q-deformed Sinh-Gordon equation; (G'/G; 1/G )-expansion method; Sine-Gordon-expansion method; Painleve analysis; NONLINEAR EVOLUTION-EQUATIONS; TRAVELING-WAVE SOLUTIONS; DARK OPTICAL SOLITONS; KADOMTSEV-PETVIASHVILI; PHYSICS; FORM;
D O I
10.3390/sym14112425
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, the (2+1)-dimensional q-deformed Sinh-Gordon model has been investigated via (G'/G,1/G)-expansion and Sine-Gordon-expansion methods. These techniques successfully retrieve trigonometric as well as hyperbolic solutions, along necessary restricted conditions applied on parameters. In addition to these solutions, dark solitons and complexiton solutions have also been obtained. The proposed equation expands the possibilities for modeling physical systems in which symmetry is broken. The obtained solutions are graphically illustrated. A Painleve analysis for the proposed model has also been discussed in this paper.
引用
收藏
页数:12
相关论文
共 53 条
[1]   Exact analytic solutions of the Schrodinger equations for some modified q-deformed potentials [J].
Abdalla, M. Sebawe ;
Eleuch, H. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (23)
[2]   EXACT ANALYTICAL SOLUTIONS OF THE WAVE FUNCTION FOR SOME q-DEFORMED POTENTIALS [J].
Abdalla, M. Sebawe ;
Eleuch, H. ;
Barakat, T. .
REPORTS ON MATHEMATICAL PHYSICS, 2013, 71 (02) :217-229
[3]   ON THE NEW EXPLICIT SOLUTIONS OF THE FRACTIONAL NONLINEAR SPACE-TIME NUCLEAR MODEL [J].
Abdel-Aty, Abdel-Haleem ;
Khater, Mostafa M. A. ;
Attia, Raghda A. M. ;
Abdel-Aty, M. ;
Eleuch, Hichem .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (08)
[4]   Bright, Dark, and Rogue Wave Soliton Solutions of the Quadratic Nonlinear Klein-Gordon Equation [J].
Abdeljabbar, Alrazi ;
Roshid, Harun-Or ;
Aldurayhim, Abdullah .
SYMMETRY-BASEL, 2022, 14 (06)
[5]   Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics [J].
Akbar, M. Ali ;
Ali, Norhashidah Hj Mohd ;
Islam, M. Tarikul .
AIMS MATHEMATICS, 2019, 4 (03) :397-411
[6]   Soliton solutions for fractional DNA Peyrard-Bishop equation via the extended-(G′/G2)-expansion method [J].
Akram, Ghazala ;
Arshed, Saima ;
Imran, Zainab .
PHYSICA SCRIPTA, 2021, 96 (09)
[7]   Optical solitons with complex Ginzburg-Landau equation having three nonlinear forms [J].
Arshed, Ima ;
Biswas, Anjan ;
Mallawi, Fouad ;
Belic, Milivoj R. .
PHYSICS LETTERS A, 2019, 383 (36)
[8]   A variety of fractional soliton solutions for three important coupled models arising in mathematical physics [J].
Arshed, Saima ;
Rahman, Riaz Ur ;
Raza, Nauman ;
Khan, Ahmad Kamal ;
Inc, Mustafa .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (01)
[9]   Solitary wave solutions for high dispersive cubic-quintic nonlinear Schrodinger equation [J].
Azzouzi, F. ;
Triki, H. ;
Mezghiche, K. ;
El Akrmi, A. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (03) :1304-1307
[10]   Analytical Method for Solving the Fractional Order Generalized KdV Equation by a Beta-Fractional Derivative [J].
Bagheri, Majid ;
Khani, Ali .
ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020