Stationary solutions for a model of amorphous thin-film growth

被引:10
作者
Blömker, D
Hairer, M
机构
[1] Rhein Westfal TH Aachen, Inst Math, D-52062 Aachen, Germany
[2] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
关键词
surface growth; stationary solution; spectral Galerkin method; SPDE; mild martingale solution;
D O I
10.1081/SAP-120037624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of stochastic partial differential equations arising as a model for amorphous thin film growth. Using a spectral Galerkin method, we verify the existence of stationary mild solutions, although the specific nature of the nonlinearity prevents us from showing the uniqueness of the solutions as well as their boundedness (in time).
引用
收藏
页码:903 / 922
页数:20
相关论文
共 19 条
[11]  
DAVIES EB, 1980, 1 PARAMETER SEMIGROU
[12]   MARTINGALE AND STATIONARY SOLUTIONS FOR STOCHASTIC NAVIER-STOKES EQUATIONS [J].
FLANDOLI, F ;
GATAREK, D .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (03) :367-391
[13]   A NOTE ON NONLINEAR STOCHASTIC-EQUATIONS IN HILBERT-SPACES [J].
GATAREK, D .
STATISTICS & PROBABILITY LETTERS, 1993, 17 (05) :387-394
[14]  
Khasminskii RZ., 1980, STOCHASTIC STABILITY
[15]  
Lunardi A, 1995, ANAL SEMIGROUPS OPTI
[16]   Identification of key parameters by comparing experimental and simulated growth of vapor-deposited amorphous Zr65Al7.5Cu27.5 films [J].
Mayr, SG ;
Moske, M ;
Samwer, K .
PHYSICAL REVIEW B, 1999, 60 (24) :16950-16955
[17]   SOME GLOBAL DYNAMICAL PROPERTIES OF THE KURAMOTO-SIVASHINSKY EQUATIONS - NONLINEAR STABILITY AND ATTRACTORS [J].
NICOLAENKO, B ;
SCHEURER, B ;
TEMAM, R .
PHYSICA D, 1985, 16 (02) :155-183
[18]   Amorphous thin-film growth:: Theory compared with experiment [J].
Raible, M ;
Mayr, SG ;
Linz, SJ ;
Moske, M ;
Hänggi, P ;
Samwer, K .
EUROPHYSICS LETTERS, 2000, 50 (01) :61-67
[19]   SOLID-ON-SOLID MODELS OF MOLECULAR-BEAM EPITAXY [J].
SIEGERT, M ;
PLISCHKE, M .
PHYSICAL REVIEW E, 1994, 50 (02) :917-931