Stationary solutions for a model of amorphous thin-film growth

被引:10
作者
Blömker, D
Hairer, M
机构
[1] Rhein Westfal TH Aachen, Inst Math, D-52062 Aachen, Germany
[2] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland
关键词
surface growth; stationary solution; spectral Galerkin method; SPDE; mild martingale solution;
D O I
10.1081/SAP-120037624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of stochastic partial differential equations arising as a model for amorphous thin film growth. Using a spectral Galerkin method, we verify the existence of stationary mild solutions, although the specific nature of the nonlinearity prevents us from showing the uniqueness of the solutions as well as their boundedness (in time).
引用
收藏
页码:903 / 922
页数:20
相关论文
共 19 条
[1]  
[Anonymous], 1988, MATH PROBLEMS STAT H
[2]  
Arnold L., 1974, STOCHASTIC DIFFERENT, DOI DOI 10.1002/ZAMM.19770570413
[3]  
Barabasi A.-L., 1995, FRACTAL CONCEPTS SUR, DOI [10.1017/CBO9780511599798, DOI 10.1017/CBO9780511599798]
[4]   Thin-film-growth models:: roughness and correlation functions [J].
Blömker, D ;
Gugg, C ;
Raible, M .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2002, 13 :385-402
[5]  
Blömker D, 2001, DISCRETE CONT DYN-B, V1, P527
[6]   On the existence of solutions for amorphous molecular beam epitaxy [J].
Blömker, D ;
Gugg, C .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2002, 3 (01) :61-73
[7]   STOCHASTIC-EQUATIONS IN HILBERT-SPACE WITH APPLICATION TO NAVIER-STOKES EQUATIONS IN ANY DIMENSION [J].
CAPINSKI, M ;
GATAREK, D .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 126 (01) :26-35
[8]   A GLOBAL ATTRACTING SET FOR THE KURAMOTO-SIVASHINSKY EQUATION [J].
COLLET, P ;
ECKMANN, JP ;
EPSTEIN, H ;
STUBBE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 152 (01) :203-214
[9]  
Da Prato G., 1996, Ergodicity for infinite dimensional systems
[10]  
Da Prato G, 1992, STOCHASTIC EQUATIONS