Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity

被引:105
作者
Redd, Travis K. [1 ]
Campbell, John Peter [1 ]
Brown, James M. [2 ]
Kim, Sang Jin [1 ,3 ]
Ostmo, Susan [1 ]
Chan, Robison Vernon Paul [4 ]
Dy, Jennifer [5 ]
Erdogmus, Deniz [5 ]
Ioannidis, Stratis [5 ]
Kalpathy-Cramer, Jayashree [2 ]
Chiang, Michael F. [1 ,6 ]
机构
[1] Oregon Hlth & Sci Univ, Dept Ophthalmol, Casey Eye Inst, Portland, OR 97239 USA
[2] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Dept Radiol, Charlestown, MD USA
[3] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Ophthalmol, Seoul, South Korea
[4] Univ Illinois, Illinois Eye & Ear Infirm, Dept Ophthalmol & Visual Sci, Chicago, IL USA
[5] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[6] Oregon Hlth & Sci Univ, Dept Med Informat & Clin Epidemiol, Portland, OR 97201 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
PLUS DISEASE DIAGNOSIS; DIABETIC-RETINOPATHY; VALIDATION;
D O I
10.1136/bjophthalmol-2018-313156
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Background Prior work has demonstrated the near-perfect accuracy of a deep learning retinal image analysis system for diagnosing plus disease in retinopathy of prematurity (ROP). Here we assess the screening potential of this scoring system by determining its ability to detect all components of ROP diagnosis. Methods Clinical examination and fundus photography were performed at seven participating centres. A deep learning system was trained to detect plus disease, generating a quantitative assessment of retinal vascular abnormality (the i-ROP plus score) on a 1-9 scale. Overall ROP disease category was established using a consensus reference standard diagnosis combining clinical and image-based diagnosis. Experts then ranked ordered a second data set of 100 posterior images according to overall ROP severity. Results 4861 examinations from 870 infants were analysed. 155 examinations (3%) had a reference standard diagnosis of type 1 ROP. The i-ROP deep learning (DL) vascular severity score had an area under the receiver operating curve of 0.960 for detecting type 1 ROP. Establishing a threshold i-ROP DL score of 3 conferred 94% sensitivity, 79% specificity, 13% positive predictive value and 99.7% negative predictive value for type 1 ROP. There was strong correlation between expert rank ordering of overall ROP severity and the i-ROP DL vascular severity score (Spearman correlation coefficient= 0.93; p< 0.0001). Conclusion The i-ROP DL system accurately identifies diagnostic categories and overall disease severity in an automated fashion, after being trained only on posterior pole vascular morphology. These data provide proof of concept that a deep learning screening platform could improve objectivity of ROP diagnosis and accessibility of screening.
引用
收藏
页码:580 / 584
页数:5
相关论文
共 24 条
[11]   The international classification of retinopathy of prematurity revisited [J].
Gole, GA ;
Ells, AL ;
Katz, X ;
Holmstrom, G ;
Fielder, AR ;
Capone, A ;
Flynn, JT ;
Good, WG ;
Holmes, JM ;
McNamara, JA ;
Palmer, EA ;
Quinn, GE ;
Shapiro, MJ ;
Trese, MGJ ;
Wallace, DK .
ARCHIVES OF OPHTHALMOLOGY, 2005, 123 (07) :991-999
[12]  
Good WV, 2003, ARCH OPHTHALMOL-CHIC, V121, P1684
[13]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[14]   Characterization of changes in blood vessel width and tortuosity in retinopathy of prematurity using image analysis [J].
Heneghan, C ;
Flynn, J ;
O'Keefe, M ;
Cahill, M .
MEDICAL IMAGE ANALYSIS, 2002, 6 (04) :407-429
[15]   Plus Disease in Retinopathy of Prematurity Improving Diagnosis by Ranking Disease Severity and Using Quantitative Image Analysis [J].
Kalpathy-Cramer, Jayashree ;
Campbell, J. Peter ;
Erdogmus, Deniz ;
Tian, Peng ;
Kedarisetti, Dharanish ;
Moleta, Chace ;
Reynolds, James D. ;
Hutcheson, Kelly ;
Shapiro, Michael J. ;
Repka, Michael X. ;
Ferrone, Philip ;
Drenser, Kimberly ;
Horowitz, Jason ;
Sonmez, Kemal ;
Swan, Ryan ;
Ostmo, Susan ;
Jonas, Karyn E. ;
Chan, R. V. Paul ;
Chiang, Michael F. .
OPHTHALMOLOGY, 2016, 123 (11) :2345-2351
[16]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[17]   Screening tests: a review with examples [J].
Maxim, L. Daniel ;
Niebo, Ron ;
Utell, Mark J. .
INHALATION TOXICOLOGY, 2014, 26 (13) :811-828
[18]  
Ryan Michael C, 2014, AMIA Annu Symp Proc, V2014, P1902
[19]   Challenges of Ophthalmic Care in the Developing World [J].
Sommer, Alfred ;
Taylor, Hugh R. ;
Ravilla, Thulasiraj D. ;
West, Sheila ;
Lietman, Thomas M. ;
Keenan, Jeremy D. ;
Chiang, Michael F. ;
Robin, Alan L. ;
Mills, Richard P. .
JAMA OPHTHALMOLOGY, 2014, 132 (05) :640-644
[20]   Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes [J].
Ting, Daniel Shu Wei ;
Cheung, Carol Yim-Lui ;
Lim, Gilbert ;
Tan, Gavin Siew Wei ;
Quang, Nguyen D. ;
Gan, Alfred ;
Hamzah, Haslina ;
Garcia-Franco, Renata ;
Yeo, Ian Yew San ;
Lee, Shu Yen ;
Wong, Edmund Yick Mun ;
Sabanayagam, Charumathi ;
Baskaran, Mani ;
Ibrahim, Farah ;
Tan, Ngiap Chuan ;
Finkelstein, Eric A. ;
Lamoureux, Ecosse L. ;
Wong, Ian Y. ;
Bressler, Neil M. ;
Sivaprasad, Sobha ;
Varma, Rohit ;
Jonas, Jost B. ;
He, Ming Guang ;
Cheng, Ching-Yu ;
Cheung, Gemmy Chui Ming ;
Aung, Tin ;
Hsu, Wynne ;
Lee, Mong Li ;
Wong, Tien Yin .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2211-2223