On Properties of Meromorphic Solutions of Certain Difference Painleve III Equations

被引:1
作者
Lan, Shuang-Ting [1 ]
Chen, Zong-Xuan [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2014/208701
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We mainly study the exponents of convergence of zeros and poles of difference and divided difference of transcendental meromorphic solutions for certain difference Painleve III equations.
引用
收藏
页数:9
相关论文
共 18 条
[1]   On the extension of the Painleve property to difference equations [J].
Ablowitz, MJ ;
Halburd, R ;
Herbst, B .
NONLINEARITY, 2000, 13 (03) :889-905
[2]   EXACT LINEARIZATION OF A PAINLEVE TRANSCENDENT [J].
ABLOWITZ, MJ ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1977, 38 (20) :1103-1106
[3]  
[Anonymous], 1900, Bull. Soc. Math. Fr
[4]   Uniqueness Theorems on Entire Functions and Their Difference Operators or Shifts [J].
Chen, Baoqin ;
Chen, Zongxuan ;
Li, Sheng .
ABSTRACT AND APPLIED ANALYSIS, 2012,
[5]   Value distribution of meromorphic solutions of certain difference Painleve equations [J].
Chen, Zong-Xuan ;
Shon, Kwang Ho .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (02) :556-566
[6]   On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane [J].
Chiang, Yik-Man ;
Feng, Shao-Ji .
RAMANUJAN JOURNAL, 2008, 16 (01) :105-129
[7]  
Fuchs L., 1905, CR HEBD ACAD SCI, V141, P555
[8]  
GAMBIER B., 1910, Acta Math., V33, P1, DOI [10.1007/BF02393211, DOI 10.1007/BF02393211)]
[9]   Finite-order meromorphic solutions and the discrete Painleve equations [J].
Halburd, R. G. ;
Korhonen, R. J. .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2007, 94 :443-474
[10]   Difference analogue of the Lemma on the Logarithmic Derivative with applications to difference equations [J].
Halburd, RG ;
Korhonen, RJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 314 (02) :477-487