Description of traces of functions in the Sobolev space with a Muckenhoupt weight

被引:22
作者
Tyulenev, A. I. [1 ]
机构
[1] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
Sobolev Space; STEKLOV Institute; Besov Space; Atomic Decomposition; Weighted Sobolev Space;
D O I
10.1134/S0081543814010209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the trace of the Sobolev space W (p) (l) (a"e (n) , gamma) with 1 < p < a and weight gamma a A (p) (loc) (a"e (n) ) on a d-dimensional plane for 1 a parts per thousand currency sign d < n. It turns out that for a function phi to be the trace of a function f a W (p) (l) (a"e (n) , gamma), it is necessary and sufficient that phi belongs to a new Besov space of variable smoothness, , constructed in this paper. The space is compared with some earlier known Besov spaces of variable smoothness.
引用
收藏
页码:280 / 295
页数:16
相关论文
共 23 条
[1]   On the trace space of a Sobolev space with a radial weight [J].
Abels, Helmut ;
Krbec, Miroslav ;
Schumacher, Katrin .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2008, 6 (03) :259-276
[2]  
[Anonymous], SOVIET MATH IZ VUZ
[3]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[4]  
Besov O.V., 1979, Integral representations of functions and imbedding theorems
[5]  
Besov O. V., 1978, Integral Representations of Functions and Imbedding Theorems
[6]  
Besov O.V., 1996, Integral Representations of Functions and Embedding Theorems
[7]  
Besov O.V., 2005, Proc. Steklov Inst. Math., V248, P47
[8]  
Besov OV., 1975, Integral Representations of Functions and Imbedding Theorems
[9]  
Brudny Yu. A, 1974, Trans. Moscow Math. Soc., V24, P73
[10]  
Burenkov V.I., 1997, Teubner-Texte zur Mathematik, V137