Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in quantifying coronary calcium

被引:29
|
作者
Takahashi, Masahiro [1 ]
Kimura, Fumiko [1 ]
Umezawa, Tatsuya [1 ]
Watanabe, Yusuke [1 ]
Ogawa, Harumi [2 ]
机构
[1] Saitama Med Univ, Int Med Ctr, Dept Diagnost Radiol, 1397-1 Yamane, Hidaka, Saitama 3501298, Japan
[2] Saitama Med Univ, Int Med Ctr, Dept Cardiol, 1397-1 Yamane, Hidaka, Saitama 3501298, Japan
关键词
Agatston score; ASIR; Coronary artery calcium score; Coronary artery calcium volume; Filtered back projection; Iterative reconstruction; CT attenuation values; Pixel CT values; BEAM COMPUTED-TOMOGRAPHY; ARTERY CALCIUM; CT ANGIOGRAPHY; DOSE REDUCTION; IMAGE QUALITY; CHEST-PAIN; QUANTIFICATION; RISK; ATHEROSCLEROSIS; ALGORITHM;
D O I
10.1016/j.jcct.2015.07.012
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Adaptive statistical iterative reconstruction (ASIR) has been used to reduce radiation dose in cardiac computed tomography. However, change of image parameters by ASIR as compared to filtered back projection (FBP) may influence quantification of coronary calcium. Objective: To investigate the influence of ASIR on calcium quantification in comparison to FBP. Methods: In 352 patients, CT images were reconstructed using FBP alone, FBP combined with ASIR 30%, 50%, 70%, and ASIR 100% based on the same raw data. Image noise, plaque density, Agatston scores and calcium volumes were compared among the techniques. Results: Image noise, Agatston score, and calcium volume decreased significantly with ASIR compared to FBP (each P < 0.001). Use of ASIR reduced Agatston score by 10.5% to 31.0%. In calcified plaques both of patients and a phantom, ASIR decreased maximum CT values and calcified plaque size. Conclusion: In comparison to FBP, adaptive statistical iterative reconstruction (ASIR) may significantly decrease Agatston scores and calcium volumes. (C) 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 50 条
  • [1] Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT
    Ren, Qingguo
    Dewan, Sheilesh Kumar
    Li, Ming
    Li, Jianying
    Mao, Dingbiao
    Wang, Zhenglei
    Hua, Yanqing
    EUROPEAN JOURNAL OF RADIOLOGY, 2012, 81 (10) : 2597 - 2601
  • [2] Abdominal CT: Comparison of Adaptive Statistical Iterative and Filtered Back Projection Reconstruction Techniques
    Singh, Sarabjeet
    Kalra, Mannudeep K.
    Hsieh, Jiang
    Licato, Paul E.
    Do, Synho
    Pien, Homer H.
    Blake, Michael A.
    RADIOLOGY, 2010, 257 (02) : 373 - 383
  • [3] Coronary artery calcium quantification: comparison between filtered-back projection, hybrid iterative reconstruction, and deep learning reconstruction techniques
    Otgonbaatar, Chuluunbaatar
    Jeon, Pil-Hyun
    Ryu, Jae-Kyun
    Shim, Hackjoon
    Jeon, Sang-Hyun
    Ko, Sung Min
    Kim, Hyunjung
    ACTA RADIOLOGICA, 2023, 64 (08) : 2393 - 2400
  • [4] Iterative Image Reconstruction Techniques for CT Coronary Artery Calcium Quantification: Comparison with Traditional Filtered Back Projection in Vitro and in Vivo
    Schindler, Andreas
    Vliegenthart, Rozemarijn
    Schoepf, U. Joseph
    Blanke, Philipp
    Ebersberger, Ullrich
    Cho, Young Jun
    Allmendinger, Thomas
    Vogt, Sebastian
    Raupach, Rainer
    Fink, Christian
    Saam, Tobias
    Bamberg, Fabian
    Nikolaou, Konstantin
    Apfaltrer, Paul
    RADIOLOGY, 2014, 270 (02) : 387 - 393
  • [5] Submillisievert Chest CT With Filtered Back Projection and Iterative Reconstruction Techniques
    Padole, Atul
    Singh, Sarabjeet
    Ackman, Jeanne B.
    Wu, Carol
    Do, Synho
    Pourjabbar, Sarvenaz
    Khawaja, Ranish Deedar Ali
    Otrakji, Alexi
    Digumarthy, Subba
    Shepard, Jo-Anne
    Kalra, Mannudeep
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2014, 203 (04) : 772 - 781
  • [6] Computed Tomography Image Quality Evaluation of a New Iterative Reconstruction Algorithm in the Abdomen (Adaptive Statistical Iterative Reconstruction-V) a Comparison With Model-Based Iterative Reconstruction, Adaptive Statistical Iterative Reconstruction, and Filtered Back Projection Reconstructions
    Goodenberger, Martin H.
    Wagner-Bartak, Nicolaus A.
    Gupta, Shiva
    Liu, Xinming
    Yap, Ramon Q.
    Sun, Jia
    Tamm, Eric P.
    Jensen, Corey T.
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2018, 42 (02) : 184 - 190
  • [7] Filtered Back Projection, Adaptive Statistical Iterative Reconstruction, and a Model-based Iterative Reconstruction in Abdominal CT: An Experimental Clinical Study
    Deak, Zsuzsanna
    Grimm, Jochen M.
    Treitl, Marcus
    Geyer, Lucas L.
    Linsenmaier, Ulrich
    Koerner, Markus
    Reiser, Maximilian F.
    Wirth, Stefan
    RADIOLOGY, 2013, 266 (01) : 197 - 206
  • [8] Comparison of low-dose coronary artery calcium scoring using low tube current technique and hybrid iterative reconstruction vs. filtered back projection
    Sulaiman, Nada
    Soon, Jeanette
    Park, Jong Kwan
    Naoum, Christopher
    Kueh, Shaw-Hua
    Blanke, Philipp
    Murphy, Darra
    Ellis, Jennifer
    Hague, Cameron J.
    Leipsic, Jonathon
    CLINICAL IMAGING, 2017, 43 : 19 - 23
  • [9] Comparison of applied dose and image quality in staging CT of neuroendocrine tumor patients using standard filtered back projection and adaptive statistical iterative reconstruction
    Boening, G.
    Schaefer, M.
    Grupp, U.
    Kaul, D.
    Kahn, J.
    Pavel, M.
    Maurer, M.
    Denecke, T.
    Hamm, B.
    Streitparth, F.
    EUROPEAN JOURNAL OF RADIOLOGY, 2015, 84 (08) : 1601 - 1607
  • [10] CT of the pancreas: comparison of image quality and pancreatic duct depiction among model-based iterative, adaptive statistical iterative, and filtered back projection reconstruction techniques
    Lin, Xiao-Zhu
    Machida, Haruhiko
    Tanaka, Isao
    Fukui, Rika
    Ueno, Eiko
    Chen, Ke-Min
    Yan, Fu-Hua
    ABDOMINAL IMAGING, 2014, 39 (03): : 497 - 505