APPROXIMATE STATE-SPACE GAUSSIAN PROCESSES VIA SPECTRAL TRANSFORMATION

被引:0
|
作者
Karvonen, Toni [1 ]
Sarkka, Simo [1 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
来源
2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2016年
基金
芬兰科学院;
关键词
Gaussian process regression; state-space approximation; fractional Matern; composite approximation; spectral preconditioning;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
State-space representations of Gaussian process regression use Kalman filtering and smoothing theory to downscale the computational complexity of the regression in the number of data points from cubic to linear. As their exact implementation requires the covariance function to possess rational spectral density, rational approximations to the spectral density must be often used. In this article we introduce new spectral transformation based methods for this purpose: a spectral composition method and a spectral preconditioning method. We study convergence of the approximations theoretically and run numerical experiments to attest their accuracy for different densities, in particular the fractional Matern.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Gaussian Flow Sigma Point Filter for Nonlinear Gaussian State-Space Models
    Nurminen, Henri
    Piche, Robert
    Godsill, Simon
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 445 - 452
  • [32] Multichannel spectral estimation in acoustics: A state-space approach
    Candy, J., V
    Fisher, K. A.
    Case, J. E.
    Goodrich, T. W.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2020, 148 (02): : 759 - 779
  • [33] RATIONAL SPECTRAL FACTORIZATION USING STATE-SPACE METHODS
    CLEMENTS, DJ
    SYSTEMS & CONTROL LETTERS, 1993, 20 (05) : 335 - 343
  • [34] Graphical Inference in Linear-Gaussian State-Space Models
    Elvira, Victor
    Chouzenoux, Emilie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4757 - 4771
  • [35] Learning stochastically stable Gaussian process state-space models
    Umlauft, Jonas
    Hirche, Sandra
    IFAC JOURNAL OF SYSTEMS AND CONTROL, 2020, 12
  • [36] STATE-SPACE APPROACH TO THE BILINEAR TRANSFORMATION AND SOME EXTENSIONS
    NARAYANA, A
    IEEE TRANSACTIONS ON EDUCATION, 1991, 34 (01) : 139 - 142
  • [37] ESTIMATION OF STATE-SPACE MODELS WITH GAUSSIAN MIXTURE PROCESS NOISE
    Miran, Sina
    Simon, Jonathan Z.
    Fu, Michael C.
    Marcus, Steven I.
    Babadi, Behtash
    2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 185 - 189
  • [38] Inversion of polynomial matrices via state-space
    Basilio, JC
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 357 (1-3) : 259 - 271
  • [39] Approximate conditional least squares estimation of a nonlinear state-space model via an unscented Kalman filter
    Ahn, Kwang Woo
    Chan, Kung-Sik
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 69 : 243 - 254
  • [40] FAST VARIATIONAL LEARNING IN STATE-SPACE GAUSSIAN PROCESS MODELS
    Chang, Paul E.
    Wilkinson, William J.
    Khan, Mohammad Emtiyaz
    Solin, Arno
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,