APPROXIMATE STATE-SPACE GAUSSIAN PROCESSES VIA SPECTRAL TRANSFORMATION

被引:0
|
作者
Karvonen, Toni [1 ]
Sarkka, Simo [1 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
来源
2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2016年
基金
芬兰科学院;
关键词
Gaussian process regression; state-space approximation; fractional Matern; composite approximation; spectral preconditioning;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
State-space representations of Gaussian process regression use Kalman filtering and smoothing theory to downscale the computational complexity of the regression in the number of data points from cubic to linear. As their exact implementation requires the covariance function to possess rational spectral density, rational approximations to the spectral density must be often used. In this article we introduce new spectral transformation based methods for this purpose: a spectral composition method and a spectral preconditioning method. We study convergence of the approximations theoretically and run numerical experiments to attest their accuracy for different densities, in particular the fractional Matern.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] KALMAN FILTERING ON APPROXIMATE STATE-SPACE MODELS
    RUIZ, JC
    VALDERRAMA, MJ
    GUTIERREZ, R
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 84 (02) : 415 - 431
  • [12] Approximate State-Space Model Predictive Control
    Lawrynczuk, Maciej
    2015 20TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2015, : 770 - 775
  • [13] Marginalized approximate filtering of state-space models
    Dedecius, K.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (01) : 1 - 12
  • [14] Reliable Modeling of Ideal Generic Memristors via State-Space Transformation
    Biolek, Dalibor
    Biolek, Zdenek
    Biolkova, Viera
    Kolka, Zdenek
    RADIOENGINEERING, 2015, 24 (02) : 393 - 407
  • [15] A state-space algorithm for the spectral factorization
    Kraffer, F
    Kwakernaak, H
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 4822 - 4823
  • [16] Variational Gaussian Process State-Space Models
    Frigola, Roger
    Chen, Yutian
    Rasmussen, Carl E.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [17] PARTIAL NON-GAUSSIAN STATE-SPACE
    SHEPHARD, N
    BIOMETRIKA, 1994, 81 (01) : 115 - 131
  • [18] The Gaussian multiplicative approximation for state-space models
    Deka, Bhargob
    Nguyen, Luong Ha
    Amiri, Saeid
    Goulet, James-A
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (03):
  • [19] NBU PROCESSES WITH GENERAL STATE-SPACE
    MARSHALL, AW
    SHAKED, M
    MATHEMATICS OF OPERATIONS RESEARCH, 1986, 11 (01) : 95 - 109
  • [20] A State-Space Approach to Optimal Level-Crossing Prediction for Linear Gaussian Processes
    Martin, Rodney A.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (10) : 5083 - 5096