APPROXIMATE STATE-SPACE GAUSSIAN PROCESSES VIA SPECTRAL TRANSFORMATION

被引:0
|
作者
Karvonen, Toni [1 ]
Sarkka, Simo [1 ]
机构
[1] Aalto Univ, Dept Elect Engn & Automat, Espoo, Finland
来源
2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP) | 2016年
基金
芬兰科学院;
关键词
Gaussian process regression; state-space approximation; fractional Matern; composite approximation; spectral preconditioning;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
State-space representations of Gaussian process regression use Kalman filtering and smoothing theory to downscale the computational complexity of the regression in the number of data points from cubic to linear. As their exact implementation requires the covariance function to possess rational spectral density, rational approximations to the spectral density must be often used. In this article we introduce new spectral transformation based methods for this purpose: a spectral composition method and a spectral preconditioning method. We study convergence of the approximations theoretically and run numerical experiments to attest their accuracy for different densities, in particular the fractional Matern.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep state-space Gaussian processes
    Zhao, Zheng
    Emzir, Muhammad
    Sarkka, Simo
    STATISTICS AND COMPUTING, 2021, 31 (06)
  • [2] Deep state-space Gaussian processes
    Zheng Zhao
    Muhammad Emzir
    Simo Särkkä
    Statistics and Computing, 2021, 31
  • [3] Approximate Gaussian variance inference for state-space models
    Deka, Bhargob
    Goulet, James-A.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2023, 37 (11) : 2934 - 2962
  • [4] State-Space Realizations and Optimal Smoothing for Gaussian Generalized Reciprocal Processes
    White, Langford B.
    Carravetta, Francesco
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (01) : 389 - 396
  • [5] Approximate Methods for State-Space Models
    Koyama, Shinsuke
    Perez-Bolde, Lucia Castellanos
    Shalizi, Cosma Rohilla
    Kass, Robert E.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 170 - 180
  • [6] TRANSFORMATION INTO A STATE-SPACE FORM
    GRAHAM, A
    ELECTRONICS LETTERS, 1967, 3 (09) : 419 - +
  • [7] Reliability Analysis via Non-Gaussian State-Space Models
    dos Santos, Thiago Rezende
    Gamerman, Dani
    Franco, Glaura da Conceicao
    IEEE TRANSACTIONS ON RELIABILITY, 2017, 66 (02) : 309 - 318
  • [8] Predicting Latent States of Dynamical Systems With State-Space Reconstruction and Gaussian Processes
    Butler, Kurt
    Feng, Guanchao
    Mikell, Charles B.
    Mofakham, Sima
    Djuric, Petar M.
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2216 - 2220
  • [9] ADAPTIVE APPROXIMATE FILTERING OF STATE-SPACE MODELS
    Dedecius, Kamil
    2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2015, : 2191 - 2195
  • [10] Kalmar filtering on approximate state-space models
    Journal of Optimization Theory and Applications, 1995, 84 (02):