Rigorous Free Energy Simulations in Virtual Screening

被引:128
作者
Cournia, Zoe [1 ]
Allen, Bryce K. [2 ]
Beuming, Thijs [3 ]
Pearlman, David A. [4 ]
Radak, Brian K. [2 ]
Sherman, Woody [2 ]
机构
[1] Acad Athens, Biomed Res Fdn, Athens 11527, Greece
[2] Silicon Therapeut, Boston, MA 02210 USA
[3] Latham BioPharm Grp, Cambridge, MA 02142 USA
[4] QSimulate Inc, Cambridge, MA 02139 USA
关键词
ACCELERATED MOLECULAR-DYNAMICS; BINDING FREE-ENERGIES; MONTE-CARLO SIMULATIONS; DATA FUSION; KINASE INHIBITORS; SIMILARITY SEARCH; SCORING FUNCTIONS; LIGAND COMPLEXES; ACCURATE DOCKING; ACTIVE-SITE;
D O I
10.1021/acs.jcim.0c00116
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Virtual high throughput screening (vHTS) in drug discovery is a powerful approach to identify hits: when applied successfully, it can be much faster and cheaper than experimental high-throughput screening approaches. However, mainstream vHTS tools have significant limitations: ligand-based methods depend on knowledge of existing chemical matter, while structure-based tools such as docking involve significant approximations that limit their accuracy. Recent advances in scientific methods coupled with dramatic speedups in computational processing with GPUs make this an opportune time to consider the role of more rigorous methods that could improve the predictive power of vHTS workflows. In this Perspective, we assert that alchemical binding free energy methods using all-atom molecular dynamics simulations have matured to the point where they can be applied in virtual screening campaigns as a final scoring stage to prioritize the top molecules for experimental testing. Specifically, we propose that alchemical absolute binding free energy (ABFE) calculations offer the most direct and computationally efficient approach within a rigorous statistical thermodynamic framework for computing binding energies of diverse molecules, as is required for virtual screening. ABFE calculations are particularly attractive for drug discovery at this point in time, where the confluence of large-scale genomics data and insights from chemical biology have unveiled a large number of promising disease targets for which no small molecule binders are known, precluding ligand-based approaches, and where traditional docking approaches have foundered to find progressible chemical matter.
引用
收藏
页码:4153 / 4169
页数:17
相关论文
共 148 条
[1]   Role of the active-site solvent in the thermodynamics of factor Xa ligand binding [J].
Abel, Robert ;
Young, Tom ;
Farid, Ramy ;
Berne, Bruce J. ;
Friesner, Richard A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (09) :2817-2831
[2]   Improving classical scoring functions using random forest: The non-additivity of free energy terms' contributions in binding [J].
Afifi, Karim ;
AI-Sadek, Ahmed Farouk .
CHEMICAL BIOLOGY & DRUG DESIGN, 2018, 92 (02) :1429-1434
[3]   Accurate calculation of the absolute free energy of binding for drug molecules [J].
Aldeghi, Matteo ;
Heifetz, Alexander ;
Bodkin, Michael J. ;
Knappcd, Stefan ;
Biggin, Philip C. .
CHEMICAL SCIENCE, 2016, 7 (01) :207-218
[4]   Mission Possible: Advances in MYC Therapeutic Targeting in Cancer [J].
Allen-Petersen, Brittany L. ;
Sears, Rosalie C. .
BIODRUGS, 2019, 33 (05) :539-553
[5]   Emerging Methods for Ensemble-Based Virtual Screening [J].
Amaro, Rommie E. ;
Li, Wilfred W. .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2010, 10 (01) :3-13
[6]  
Åqvist J, 2001, COMB CHEM HIGH T SCR, V4, P613
[7]   Structure-Based Virtual Screening, Molecular Dynamics and Binding Free Energy Calculations of Hit Candidates as ALK-5 Inhibitors [J].
Araujo, Sheila C. ;
Maltarollo, Vinicius G. ;
Almeida, Michell O. ;
Ferreira, Leonardo L. G. ;
Andricopulo, Adriano D. ;
Honorio, Kathia M. .
MOLECULES, 2020, 25 (02)
[8]   Analogue quantum chemistry simulation [J].
Argueello-Luengo, Javier ;
Gonzalez-Tudela, Alejandro ;
Shi, Tao ;
Zoller, Peter ;
Cirac, J. Ignacio .
NATURE, 2019, 574 (7777) :215-+
[9]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[10]   Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2 [J].
Athanasiou, Christina ;
Vasilakaki, Sofia ;
Dellis, Dimitris ;
Cournia, Zoe .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (01) :21-44