The Modalized Many-Valued Logic

被引:0
作者
Chen Bo [1 ]
Zhao Kang [1 ]
Zhang Bing [2 ]
Wu Cheng [2 ]
Ma Changhui [1 ]
Suiyuefei [3 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, State Gird Shandong Elect Power Res Inst, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, State Gird Shandong Elect Power Co, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing, Peoples R China
来源
2018 14TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG) | 2018年
关键词
The many-value logic; the intermediate logic; contrary; the soundness; the completeness;
D O I
10.1109/SKG.2018.00010
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The intermediate logic is a three-valued logic proposed by Zhu. A modalized many-valued logic will be proposed in this paper which the unary connective @(i) is taken as a modality and a Gentzen-typed deduction system will be given so that the the system is sound and complete with the linearly many-valued semantics of the many-valued logic.
引用
收藏
页码:265 / 268
页数:4
相关论文
共 18 条
  • [1] [Anonymous], 2001, STUDIES LOGIC COMPUT
  • [2] [Anonymous], COLLEGIUM LOGICUM AN
  • [3] Arieli O., 1996, Journal of Logic, Language and Information, V5, P25, DOI 10.1007/BF00215626
  • [4] The value of the four values
    Arieli, O
    Avron, A
    [J]. ARTIFICIAL INTELLIGENCE, 1998, 102 (01) : 97 - 141
  • [5] Kleene's three-valued logic and process algebra
    Bergstra, JA
    Ponse, A
    [J]. INFORMATION PROCESSING LETTERS, 1998, 67 (02) : 95 - 103
  • [6] The Variant Gentzen System for the Propositional Logic
    Chen Bo
    Sui Yuefei
    Cao Cungen
    [J]. 2015 11TH INTERNATIONAL CONFERENCE ON SEMANTICS, KNOWLEDGE AND GRIDS (SKG), 2015, : 162 - 167
  • [7] Font J.M., 1997, Logic Journal of the IGPL, V5, P1, DOI DOI 10.1093/JIGPAL/5.3.1-E
  • [8] Li W, 2010, PROG COMPUT SCI APPL, V25, P1, DOI 10.1007/978-3-7643-9977-1
  • [9] A formal theory of intermediate quantifiers
    Novak, Vilem
    [J]. FUZZY SETS AND SYSTEMS, 2008, 159 (10) : 1229 - 1246
  • [10] A Generalization of ACP Using Belnap's Logic
    Ponse, Alban
    van der Zwaag, Mark B.
    [J]. ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2006, 162 (01) : 287 - 293