Random Forest for improved analysis efficiency in passive acoustic monitoring

被引:31
|
作者
Ross, Jesse C. [1 ]
Allen, Paul E. [2 ]
机构
[1] Cornell Lab Ornithol, Conservat Sci Program, Ithaca, NY 14850 USA
[2] Cornell Lab Ornithol, Ithaca, NY 14850 USA
关键词
Nocturnal flight call; Machine learning; Random Forest; Bioacoustics; Workflow; CLASSIFICATION; REFLECTIVITY; COUNTS; BIRDS;
D O I
10.1016/j.ecoinf.2013.12.002
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Passive acoustic monitoring often leads to large quantities of sound data which are burdensome to process, such that the availability and cost of expert human analysts can be a bottleneck and make ecosystem or landscape-scale projects infeasible. This manuscript presents a method for rapidly analyzing the results of band-limited energy detectors, which are commonly used for the detection of passerine nocturnal flight calls, but which typically are beset by high false positive rates. We first manually classify a subset of the detected events as signals of interest or false detections. From that subset, we build a Random Forest model to eliminate most of the remaining events as false detections without further human inspection. The overall reduction in the labor required to separate signals of interest from false detections can be 80% or more. Additionally, we present an R package, flightcallr, containing functions which can be used to implement this new workflow. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:34 / 39
页数:6
相关论文
共 50 条
  • [21] Applying a Random Forest Approach to Imbalanced Dataset on Network Monitoring Analysis
    Chen, Qian
    Zhang, Xing
    Wang, Ying
    Zhai, Zhijia
    Yang, Fen
    CYBER SECURITY, CNCERT 2022, 2022, 1699 : 28 - 37
  • [22] A review of big data analysis methods for baleen whale passive acoustic monitoring
    Kowarski, Katie A.
    Moors-Murphy, Hilary
    MARINE MAMMAL SCIENCE, 2021, 37 (02) : 652 - 673
  • [23] The possibility of passive acoustic monitoring of a Scuba Diver
    V. I. Korenbaum
    S. V. Gorovoy
    A. A. Tagiltsev
    A. E. Kostiv
    A. E. Borodin
    I. A. Pochekutova
    A. M. Vasilistov
    A. C. Krupenkov
    A. D. Shiryaev
    D. I. Vlasov
    Doklady Earth Sciences, 2016, 466 : 187 - 190
  • [24] Passive acoustic monitoring in terrestrial vertebrates: a review
    Hoefer, Sebastian
    McKnight, Donald T. T.
    Allen-Ankins, Slade
    Nordberg, Eric J. J.
    Schwarzkopf, Lin
    BIOACOUSTICS-THE INTERNATIONAL JOURNAL OF ANIMAL SOUND AND ITS RECORDING, 2023, 32 (05): : 506 - 531
  • [25] Terrestrial Passive Acoustic Monitoring: Review and Perspectives
    Moreira Sugai, Larissa Sayuri
    Freire Silva, Thiago Sanna
    Ribeiro, Jose Wagner, Jr.
    Llusia, Diego
    BIOSCIENCE, 2019, 69 (01) : 15 - 25
  • [26] Gliders for passive acoustic monitoring of the oceanic environment
    Cauchy, Pierre
    Heywood, Karen J.
    Merchant, Nathan D.
    Risch, Denise
    Queste, Bastien Y.
    Testor, Pierre
    FRONTIERS IN REMOTE SENSING, 2023, 4
  • [27] PASSIVE ACOUSTIC MONITORING OF SURFACE VESSEL ACTIVITY
    Nosal, Eva-Marie
    Nosal, Miloslav
    OMAE 2009, VOL 4, PTS A AND B, 2009, : 667 - 671
  • [28] The possibility of passive acoustic monitoring of a Scuba Diver
    Korenbaum, V. I.
    Gorovoy, S. V.
    Tagiltsev, A. A.
    Kostiv, A. E.
    Borodin, A. E.
    Pochekutova, I. A.
    Vasilistov, A. M.
    Krupenkov, A. C.
    Shiryaev, A. D.
    Vlasov, D. I.
    DOKLADY EARTH SCIENCES, 2016, 466 (02) : 187 - 190
  • [29] Economic and Life Cycle Analysis of Passive and Active Monitoring of Ozone for Forest Protection
    Carrari, Elisa
    De Marco, Alessandra
    Laschi, Andrea
    Badea, Ovidiu
    Dalstein-Richier, Laurence
    Fares, Silvano
    Leca, Stefan
    Marchi, Enrico
    Sicard, Pierre
    Popa, Ionel
    Hoshika, Yasutomo
    Materassi, Alessandro
    Pallante, Giacomo
    Pitar, Diana
    Paoletti, Elena
    ENVIRONMENTS, 2021, 8 (10)
  • [30] Clustering of passive tracers in a random acoustic velocity field
    Koshel, Konstantin V.
    Stepanov, Dmitry V.
    PHYSICS OF FLUIDS, 2024, 36 (05)