Heisenberg uniqueness pairs for the Fourier transform on the Heisenberg group

被引:5
作者
Ghosh, Somnath [1 ]
Srivastava, R. K. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Gauhati 781039, India
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2021年 / 166卷
关键词
Convolution; Fourier transform; Heisenberg group; Laguerre polynomial; UNCERTAINTY PRINCIPLES; BENEDICKS THEOREM; SETS;
D O I
10.1016/j.bulsci.2020.102941
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove that (unit sphere, non-harmonic cone) is a Heisenberg uniqueness pair for the symplectic Fourier transform on C-n. We derive that spheres as well as non-harmonic cones are determining sets for the spectral projections of the finite measure supported on the unit sphere. Further, we prove that if the Fourier transform of a finitely supported function on step two nilpotent Lie group is of arbitrary finite rank, then the function must be zero. The latter result correlates to the annihilating pair for the Weyl transform. (C) 2020 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:23
相关论文
共 46 条