Insight into the Polymerization-Induced Self-Assembly via a Realistic Computer Simulation Strategy

被引:32
|
作者
Yan, Yu-Dou [1 ]
Xue, Yao-Hong [2 ]
Zhao, Huan-Yu [1 ]
Liu, Hong [1 ,3 ]
Lu, Zhong-Yuan [1 ]
Gu, Feng-Long [3 ]
机构
[1] Jilin Univ, Lab Theoret & Computat Chem, State Key Lab Supramol Struct & Mat, Changchun 130023, Jilin, Peoples R China
[2] Guangdong Univ Finance & Econ, Informat Sci Sch, Guangzhou 510320, Guangdong, Peoples R China
[3] South China Normal Univ, Sch Chem, Key Lab Theoret Chem Environm, Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
CONTROLLED/LIVING RADICAL POLYMERIZATION; RAFT DISPERSION POLYMERIZATION; INDUCED MORPHOLOGICAL-CHANGES; MOLECULAR-DYNAMICS; MULTIPLE MORPHOLOGIES; VESICLES; MICELLES; GROWTH; HYDROLYSIS; STYRENE;
D O I
10.1021/acs.macromol.9b01051
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The dynamic process of polymerization-induced self-assembly (PISA) is simulated by the dissipative particle dynamics method coupled with the stochastic reaction model. Meaningful comparisons between simulation and experimental results are made. Typical microscopic self-assembly structures are analyzed, and possible dynamic pathways of their formation are proposed. We find that increasing the length of the hydrophobic block leads to the decrease of the size of the vesicle chamber, which further yields the coexistence of vesicles and compound micelles. Moreover, PISA with fast polymerization is proved to experience a different pathway of transition, in which the hydrophobic and hydrophilic blocks undergo a typical flip-flop process to form the final vesicle structure. The simulation study can act as a theoretical guide to achieve the better design or fine regulation of new PISA systems and relevant functional materials.
引用
收藏
页码:6169 / 6180
页数:12
相关论文
共 50 条
  • [1] An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation
    Huang, Feng
    Lv, Yisheng
    Wang, Liquan
    Xu, Pengxiang
    Lin, Jiaping
    Lin, Shaoliang
    SOFT MATTER, 2016, 12 (30) : 6422 - 6429
  • [2] Polymerization-Induced Self-Assembly
    Lansalot, Muriel
    Rieger, Jutta
    MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (02)
  • [3] Polymerization-induced self-assembly via RAFT aqueous dispersion polymerization
    Armes, Steven P.
    Blanazs, Adam
    Madsen, Jeppe
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [4] Constructing helical nanowires via polymerization-induced self-assembly
    Chen, Qiumeng
    Li, Yahui
    Liu, Ming
    Wu, Xuan
    Shen, Jianliang
    Shen, Liangliang
    RSC ADVANCES, 2021, 11 (15) : 8986 - 8992
  • [5] Polymerization-induced self-assembly of acrylonitrile via ICAR ATRP
    Wang, Guowei
    Wang, Zongyu
    Lee, Bongjoon
    Yuan, Rui
    Lu, Zhao
    Yan, Jiajun
    Pan, Xiangcheng
    Song, Yang
    Bockstaller, Michael R.
    Matyjaszewski, Krzysztof
    POLYMER, 2017, 129 : 57 - 67
  • [6] Accessing unusual morphologies via polymerization-induced self-assembly
    An, Zesheng
    Lv, Fei
    Wu, Peiyi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [7] Polymerization techniques in polymerization-induced self-assembly (PISA)
    Liu, Chao
    Hong, Chun-Yan
    Pan, Cai-Yuan
    POLYMER CHEMISTRY, 2020, 11 (22) : 3673 - 3689
  • [8] New Insight into Cluster Aggregation Mechanism during Polymerization-Induced Self-Assembly by Molecular Dynamics Simulation
    Brunel, Fabrice
    de la Haye, Jennifer Lesage
    Lansalot, Muriel
    D'Agosto, Franck
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (30): : 6609 - 6617
  • [9] Emerging Trends in Polymerization-Induced Self-Assembly
    Penfold, Nicholas J. W.
    Yeow, Jonathan
    Boyer, Cyrille
    Armes, Steven P.
    ACS MACRO LETTERS, 2019, 8 (08) : 1029 - 1054
  • [10] Polymerization-induced thermal self-assembly (PITSA)
    Figg, C. Adrian
    Simula, Alexandre
    Gebre, Kalkidan A.
    Tucker, Bryan S.
    Haddleton, David M.
    Sumerlin, Brent S.
    CHEMICAL SCIENCE, 2015, 6 (02) : 1230 - 1236