Measures on the product of compact spaces

被引:0
作者
Villanueva, I [1 ]
机构
[1] Univ Complutense Madrid, Fac Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
来源
MONATSHEFTE FUR MATHEMATIK | 2002年 / 137卷 / 02期
关键词
uncountable metrizable compact space; vector valued measures;
D O I
10.1007/s00605-002-0500-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If K is an uncountable metrizable compact space, we prove a "factorization" result for a wide variety of vector valued Borel measures mu defined on K-n. This result essentially says that for every such measure p there exists a measure tt' defined on K such that the measure mu of a product A(1) x ... x A(n) of Borel sets of K equals the measure mu' of the intersection A(1)'boolean AND ... boolean ANDA(n)', where the A(i)"s are certain transforms of the A(i)'s.
引用
收藏
页码:167 / 172
页数:6
相关论文
共 6 条
[1]  
COHN D., 1980, Measure Theory
[2]  
Diestel J., 1977, VECTOR MEASURES
[3]  
PELCZYNSKI A, 1968, DISS MATH, V58
[4]  
Semadeni Z., 1971, Banach Spaces of Continuous Functions
[5]   AN APPLICATION OF AVERAGING OPERATORS TO MULTILINEARITY [J].
TASKINEN, J .
MATHEMATISCHE ANNALEN, 1993, 297 (03) :567-572
[6]  
VILLANUEVA I, 2002, IN PRESS MATH NACHR