Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell - Modelling and fuzzy control of purging process

被引:30
作者
Zhang, Caizhi [1 ,2 ]
Liu, Zhitao [3 ]
Zhang, Xiongwen [4 ]
Chan, Siew Hwa [1 ,2 ]
Wang, Youyi [5 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Energy Res Inst, 50 Nanyang Ave, Singapore 637553, Singapore
[3] Zhejiang Univ, Inst Cyber Syst & Control, State Key Lab Ind Control Technol, Hangzhou 310027, Zhejiang, Peoples R China
[4] Xi An Jiao Tong Univ, Key Lab Thermofluid Sci & Engn MOE, Sch Energy & Power Engn, Xian 710049, Shaanxi, Peoples R China
[5] Nanyang Technol Univ, Sch Elect & Elect Engn, Nanyang Ave, Singapore 639798, Singapore
关键词
HT-PEMFC; Dynamic voltage model; Purging; Fuzzy control; TRANSIENT-RESPONSE; WATER TRANSPORT; SYSTEM; OPTIMIZATION; STACK; MANAGEMENT; OPERATION; VOLTAGE; LOGIC; CYCLE;
D O I
10.1016/j.energy.2015.12.019
中图分类号
O414.1 [热力学];
学科分类号
摘要
To improve fuel utilization of HT-PEMFC (high-temperature proton exchange membrane fuel cell), which normally operates under dead-end mode, with properly periodical purging to flush out the accumulated water vapour in the anode flow-field is necessary, otherwise the performance of HT-PEMFC would drop gradually. In this paper, a semi-empirical dynamic voltage model of HT-PEMFC is developed for controller design purpose via fitting the experimental data and validated with experimental results. Then, a fuzzy controller is designed to schedule the purging based on the obtained model. According to the result, the developed model well reflects transient characteristics of HT-PEMFC voltage and the fuzzy controller offers good performance for purging scheduling under uncertain load demands. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 50 条
  • [21] Multi-Objective Assessment and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell: Steady-State Analysis
    Zhong, Zhaoda
    Araya, Samuel Simon
    Liso, Vincenzo
    Zhu, Jimin
    ENERGIES, 2023, 16 (24)
  • [22] Analysis of CO gas continuous purging strategy for high-temperature proton exchange membrane fuel cells in dead-end anode mode
    Zhang, Caizhi
    Gao, Yiwen
    Zheng, Hualin
    Lei, Gang
    Chin, Cheng Siong
    Ning, Haifeng
    Xu, Xinhai
    ENERGY, 2025, 318
  • [23] Multi-factor impact mechanism on the performance of high temperature proton exchange membrane fuel cell
    Chen, Zhijie
    Zuo, Wei
    Zhou, Kun
    Li, Qingqing
    Huang, Yuhan
    Jiaqiang, E.
    ENERGY, 2023, 278
  • [24] Performance evaluation of an integrated high-temperature proton exchange membrane fuel cell and absorption cycle system for power and heating/cooling cogeneration
    Guo, Xinru
    Zhang, Houcheng
    Zhao, Jiapei
    Wang, Fu
    Wang, Jiatang
    Miao, He
    Yuan, Jinliang
    ENERGY CONVERSION AND MANAGEMENT, 2019, 181 : 292 - 301
  • [25] Integrating high-temperature proton exchange membrane fuel cell with duplex thermoelectric cooler for electricity and cooling cogeneration
    Qin, Yuan
    Zhang, Houcheng
    Zhang, Xinfeng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (91) : 38703 - 38720
  • [26] Temperature Control for a Proton-Exchange Membrane Fuel Cell System with Unknown Dynamic Compensations
    Xing, Yashan
    Costa-Castello, Ramon
    Na, Jing
    COMPLEXITY, 2020, 2020
  • [27] Numerical investigation of high-temperature proton exchange membrane fuel cell conductivity at different parameters
    Samir, A.
    Maowwad, M. S.
    Farahat, M. A.
    Talaat, M.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [28] Comprehensive performance analysis of a high-temperature PEM fuel cell under different operating and design conditions
    Bayat, Mutlucan
    Ozalp, Mehmet
    Gurbuz, Hueseyin
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [29] Influences of reformate on the performance of high temperature proton exchange membrane fuel cell and its optimization strategy
    Sun, Mu
    Huang, Jicai
    Xia, Zhangxun
    Yang, Congrong
    Jing, Fenning
    Wang, Suli
    Sun, Gongquan
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [30] A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system
    Rosli, R. E.
    Sulong, A. B.
    Daud, W. R. W.
    Zullzifley, M. A.
    Husaini, T.
    Rosli, M. I.
    Majlan, E. H.
    Haque, M. A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (14) : 9293 - 9314