Poisson algebras and symmetric Leibniz bialgebra structures on oscillator Lie algebras

被引:17
作者
Albuquerque, H. [1 ]
Barreiro, E. [1 ]
Benayadi, S. [2 ]
Boucetta, M. [3 ]
Sanchez, J. M. [4 ]
机构
[1] Univ Coimbra, CMUC, Dept Math, Apartado 3008 EC Santa Cruz, P-3001501 Coimbra, Portugal
[2] Univ Lorraine, Lab Math IECL UMR CNRS 7502, 3 Rue Augustin Fresnel,BP 45112, F-57073 Metz 03, France
[3] Univ Cadi Ayyad, Fac Sci & Tech, BP 549, Marrakech, Morocco
[4] Univ Cadiz, Dept Matemat, Cadiz, Spain
关键词
Oscillator Lie algebras; Symmetric Leibniz algebras; Leibniz bialgebras; EQUATIONS;
D O I
10.1016/j.geomphys.2020.103939
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Oscillator Lie algebras are the only non commutative solvable Lie algebras which carry a bi-invariant Lorentzian metric. In this paper, we determine all the Poisson structures, and in particular, all symmetric Leibniz algebra structures whose underlying Lie algebra is an oscillator Lie algebra. We give also all the symmetric Leibniz bialgebra structures whose underlying Lie bialgebra structure is a Lie bialgebra structure on an oscillator Lie algebra. We derive some geometric consequences on oscillator Lie groups. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 21 条
[1]   Lie algebras with quadratic dimension equal to 2 [J].
Bajo, Ignacio ;
Benayadi, Said .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 209 (03) :725-737
[2]   A New Approach to Leibniz Bialgebras [J].
Barreiro, Elisabete ;
Benayadi, Said .
ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (01) :71-101
[3]   Socle and some invariants of quadratic Lie superalgebras [J].
Benayadi, S .
JOURNAL OF ALGEBRA, 2003, 261 (02) :245-291
[4]   Special bi-invariant linear connections on Lie groups and finite dimensional Poisson structures [J].
Benayadi, Said ;
Boucetta, Mohamed .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 36 :66-89
[5]  
BLOKH A, 1965, DOKL AKAD NAUK SSSR+, V165, P471
[6]  
Blokh A. M., 1967, SOV MATH DOKL, V8, P824
[7]   Solutions of the Yang-Baxter equations on quadratic Lie groups: The case of oscillator groups [J].
Boucetta, Mohamed ;
Medina, Alberto .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (12) :2309-2320
[8]   Totally Geodesic and Parallel Hypersurfaces of Four-Dimensional Oscillator Groups [J].
Calvaruso, Giovanni ;
Van der Veken, Joeri .
RESULTS IN MATHEMATICS, 2013, 64 (1-2) :135-153
[9]  
Díaz RD, 1999, J MATH PHYS, V40, P3490, DOI 10.1063/1.532902
[10]  
DRINFELD VG, 1983, SOV MATH DOKL, V27, P68